# for Core packages
library(tidyverse)
## Warning: package 'readr' was built under R version 4.2.3
## Warning: package 'dplyr' was built under R version 4.2.3
## ── Attaching core tidyverse packages ──────────────────────── tidyverse 2.0.0 ──
## ✔ dplyr     1.1.4     ✔ readr     2.1.5
## ✔ forcats   1.0.0     ✔ stringr   1.5.0
## ✔ ggplot2   3.4.4     ✔ tibble    3.2.1
## ✔ lubridate 1.9.2     ✔ tidyr     1.3.0
## ✔ purrr     1.0.2     
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## ✖ dplyr::filter() masks stats::filter()
## ✖ dplyr::lag()    masks stats::lag()
## ℹ Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors
# for financial analysis
library(tidyquant)
## Loading required package: PerformanceAnalytics
## Loading required package: xts
## Loading required package: zoo
## 
## Attaching package: 'zoo'
## 
## The following objects are masked from 'package:base':
## 
##     as.Date, as.Date.numeric
## 
## 
## Attaching package: 'xts'
## 
## The following objects are masked from 'package:dplyr':
## 
##     first, last
## 
## 
## Attaching package: 'PerformanceAnalytics'
## 
## The following object is masked from 'package:graphics':
## 
##     legend
## 
## Loading required package: quantmod
## Loading required package: TTR
## Registered S3 method overwritten by 'quantmod':
##   method            from
##   as.zoo.data.frame zoo
# for times series
library(timetk)

Goal: Apply Matt Dancho’s tutorial to state unemployment initial claims of New England states.

The following is the replication of Matt Dancho’s tutorial on this page

start_date <- "1989-01-01"

symbols_txt <- c("CTICLAIMS", # Connecticut
                 "MEICLAIMS", # Maine
                 "MAICLAIMS", # Massachusetts
                 "NHICLAIMS", # New Hampshire
                 "RIICLAIMS", # Rhode Island
                 "VTICLAIMS") # Vermont

claims_tbl <- tq_get(symbols_txt, get = "economic.data", from = start_date) %>%
    mutate(symbol = fct_recode(symbol,
                               "Connecticut"   = "CTICLAIMS",
                               "Maine"         = "MEICLAIMS",
                               "Massachusetts" = "MAICLAIMS",
                               "New Hampshire" = "NHICLAIMS",
                               "Rhode Island"  = "RIICLAIMS",
                               "Vermont"       = "VTICLAIMS")) %>%
    rename(claims = price)

Plotting time series

claims_tbl %>%

  plot_time_series(.date_var = date, .value = claims)

Box plots

claims_tbl %>% count(symbol)
## # A tibble: 6 × 2
##   symbol            n
##   <fct>         <int>
## 1 Connecticut    1840
## 2 Massachusetts  1840
## 3 Maine          1840
## 4 New Hampshire  1840
## 5 Rhode Island   1840
## 6 Vermont        1840
claims_tbl %>%
  filter_by_time(.date_var = date, .end_date = "2021") %>%
  group_by(symbol) %>%
  plot_time_series_boxplot(.date_var = date,
                                    .value = claims,
                                    .period = "1 year",
                                    .facet_ncol = 2)

Regression plots

claims_tbl %>%
  group_by(symbol) %>%
  plot_time_series_regression(
    .date_var = date,
    .facet_ncol = 2,
    .formula = log(claims) ~ as.numeric(date) + month(date, label = TRUE),
    .show_summary = FALSE)

Plotting Seasonality and Correlation

Correlation Plots

claims_tbl %>%
    group_by(symbol) %>%
    plot_acf_diagnostics(date, 
                         claims, .lags = "7 days")

Seasonality

claims_tbl %>%
  plot_seasonal_diagnostics(date, claims) 
claims_tbl %>%
  group_by(symbol) %>%
  plot_seasonal_diagnostics(date, claims)

STL Diagnostics

claims_tbl %>%
  group_by(symbol) %>%
  plot_stl_diagnostics(date, claims, 
                       .feature_set = c("observed", "season", "trend", "remainder")) 
## frequency = 13 observations per 1 quarter
## trend = 53 observations per 1 year
## frequency = 13 observations per 1 quarter
## trend = 53 observations per 1 year
## frequency = 13 observations per 1 quarter
## trend = 53 observations per 1 year
## frequency = 13 observations per 1 quarter
## trend = 53 observations per 1 year
## frequency = 13 observations per 1 quarter
## trend = 53 observations per 1 year
## frequency = 13 observations per 1 quarter
## trend = 53 observations per 1 year

Time Series Data Wrangling

Summarize by Time

claims_tbl %>%
  group_by(symbol) %>%
  plot_time_series(date, claims, .facet_ncol = 2, .interactive = FALSE)

Filter By Time

claims_tbl %>%
    group_by(symbol) %>%
    filter_by_time(.date_var = date, .start_date = "1989-01-07", .end_date = "2024") %>%
    plot_time_series(date, claims, .facet_ncol = 2) 

Padding Data

claims_tbl %>% 
    group_by(symbol) %>%
    pad_by_time(date, .by = "day", .fill_na_direction = "down")
## # A tibble: 77,244 × 3
## # Groups:   symbol [6]
##    symbol      date       claims
##    <fct>       <date>      <int>
##  1 Connecticut 1989-01-07   8345
##  2 Connecticut 1989-01-08   8345
##  3 Connecticut 1989-01-09   8345
##  4 Connecticut 1989-01-10   8345
##  5 Connecticut 1989-01-11   8345
##  6 Connecticut 1989-01-12   8345
##  7 Connecticut 1989-01-13   8345
##  8 Connecticut 1989-01-14   6503
##  9 Connecticut 1989-01-15   6503
## 10 Connecticut 1989-01-16   6503
## # ℹ 77,234 more rows

Sliding (Rolling) Calculations

claims_tbl %>%
    head(10) %>%
    mutate(rolling_avg_2 = slidify_vec(claims, mean, 
                                       .period = 2, 
                                       .align = "left", 
                                       .partial = TRUE))
## # A tibble: 10 × 4
##    symbol      date       claims rolling_avg_2
##    <fct>       <date>      <int>         <dbl>
##  1 Connecticut 1989-01-07   8345         7424 
##  2 Connecticut 1989-01-14   6503         5162 
##  3 Connecticut 1989-01-21   3821         4242 
##  4 Connecticut 1989-01-28   4663         4412.
##  5 Connecticut 1989-02-04   4162         4250.
##  6 Connecticut 1989-02-11   4337         4208 
##  7 Connecticut 1989-02-18   4079         3818.
##  8 Connecticut 1989-02-25   3556         3691 
##  9 Connecticut 1989-03-04   3826         3670.
## 10 Connecticut 1989-03-11   3515         3515
# Make the rolling function
roll_avg_30 <- slidify(.f = mean, .period = 30, .align = "center", .partial = TRUE)

# Apply the rolling function
claims_tbl %>%
  select(symbol, date, claims) %>%
  group_by(symbol) %>%
  # Apply Sliding Function
  mutate(rolling_avg_30 = roll_avg_30(claims)) %>%
  tidyr::pivot_longer(cols = c(claims, rolling_avg_30)) %>%
  plot_time_series(date, symbol, .color_var = name,
                   .facet_ncol = 2, .smooth = FALSE, 
                   .interactive = FALSE)