Lindeberg-Feller CLT and Lyapunov’s Condition

Detailed derivation of the Proof

Arnab Rakshit, Rupanjan Mukherjee, Sourav Biswas

Indian Statistical Institute, Delhi

Lindeberg-Feller Central Limit Theorem.

About the Theorem.

Sufficiency is proved by Lindeberg in 1922 and necessity by Feller in 1935. Lindeberg-Feller CLT is one of the most far-reaching results in probability theory. Nearly all generalizations of various types of central limit theorems spin from Lindeberg-Feller CLT.

The insights of the Lindeberg condition are that the “wild” values of the random variables, compared with \(s_n\) , the standard deviation of \(S_n\) as the normalizing constant, are insignificant and can be truncated off without affecting the general behavior of the partial sum \(S_n\).

Lindeberg - Feller CLT.

Suppose \(X_1,X_2,\ldots,X_n\) are independent r.v.s with mean \(0\) and variance \(\sigma_n^2\). Let \(s^2_n=\sum_{i=1}^n\sigma^2_j\) denote the variance of partial sum \(S_n=X_1+X_2+\ldots+X_n\) . If, for every \(\epsilon>0\) ,

\[ \frac{1}{s_n^2}\sum_{j=1}^n\mathbb{E}\left(X_j^2\boldsymbol{1}_\left\{\left|X_j\right|>\epsilon s_n\right\}\right)\rightarrow0, \]

then \(\frac{S_n}{s_n}\overset{\mathcal{D}}{\longrightarrow}\mathcal{N}\left(0,1\right)\).

Conversely, if \(\underset{1\leq j\leq n}{\max}\frac{\sigma_j^2}{s_n^2}\rightarrow0\) and \(\frac{S_n}{s_n}\overset{\mathcal{D}}{\longrightarrow}\mathcal{N}\left(0,1\right)\) , then Lindeberg Condition holds.

Prerequisites

  1. \[ \forall x>0,\left|e^{-x}-1+x\right|\leq x^2/2 \]

  2. For complex \(z_j\) and \(w_j\) with \(\left|z_j\right|\leq1\) and \(\left|w_j\right|\leq1\), \(\left|\prod_{j=1}^nz_j-\prod_{j=1}^nw_j\right|\leq\sum_{j=1}^n\left|z_j-w_j\right|\)

  3. \[ \forall x\in\mathbb{R}\,\,\cos x-1\geq-\frac{x^2}{2} \]

  4. \[ \left|\log (x+1)-x\right|\leq x^2\,\,\,\,\mathrm{for}\,\,x>0 \]

  5. \(\forall\,k\geq1\)

\[ \left|\varphi_X\left(\lambda\right)-1-\sum_{j=1}^k\frac{\left(i\lambda\right)^j}{j!}\mathbb{E}\left(X^j\right)\right|\leq\min\left\{\frac{2\left|\lambda\right|^k\mathbb{E}\left|X\right|^k}{k!},\frac{\left|\lambda\right|^{k+1}\mathbb{E}\left|X\right|^{k+1}}{(k+1)!}\right\}\,\,\,\,\forall\lambda\in\mathbb{R} \]

If part

Proof of Lindeberg-Feller CLT contd.

\(\Leftarrow\)” The Lindeberg Condition implies,

\[ \sigma_j^2=\mathbb{E}\left(X_j^2\boldsymbol{1}_\left\{\left|X_j\right|>\epsilon s_n\right\}\right)+\mathbb{E}\left(X_j^2\boldsymbol{1}_\left\{\left|X_j\right|\leq\epsilon s_n\right\}\right) \]

\[ \leq \mathbb{E}\left(X_j^2\boldsymbol{1}_\left\{\left|X_j\right|>\epsilon s_n\right\}\right) + \epsilon^2s_n^2\,\,\, \forall j \]

\[ \leq \sum_{i=1}^n \mathbb{E}\left(X_j^2\boldsymbol{1}_\left\{\left|X_j\right|>\epsilon s_n\right\}\right) + \epsilon^2s_n^2\,\, \forall \,\,j \]

\[ \implies \frac{\sigma_j^2}{s_n^2}\leq \frac{1}{s_n^2}{\sum_{i=1}^n \mathbb{E}\left(X_j^2\boldsymbol{1}_\left\{\left|X_j\right|>\epsilon s_n\right\}\right)} + \epsilon^2\,\,\,\forall j \]

\[ \therefore \underset{1\leq j\leq n}{\max}\left(\frac{\sigma_j^2}{s_n^2} \right) \leq \underset{\longrightarrow 0}{\underbrace{ \frac{1}{s_n^2}{\sum_{i=1}^n \mathbb{E}\left(X_j^2\boldsymbol{1}_\left\{\left|X_j\right|>\epsilon s_n\right\}\right)}}} + \epsilon^2 \]

by letting \(n\rightarrow\infty\) and then \(\epsilon\downarrow0\),

\[ \underset{1\leq j\leq n}{\max}\left(\frac{\sigma_j^2}{s_n^2} \right)\longrightarrow0 \]

For any \(\epsilon >0\), then \(\forall\, j\)

\[ \left|\mathbb{E}\left(e^{itX_j/s_n}\right)-e^{-t^2\sigma_j^2/2s_n^2}\right| \]

\[ =\left|\mathbb{E}\left(e^{itX_j/s_n}\right)-\mathbb{E}\left(1+it\frac{X_j}{s_n}-\frac{t^2}{2}\frac{X_j^2}{s_n^2}\right)+1+it\mathbb{E}\left(\frac{X_j}{s_n}\right)-\frac{t^2}{2}\mathbb{E}\left(\frac{X_j^2}{s_n^2}\right)-e^{-t^2\sigma_j^2/2s_n^2}+1-\frac{t^2\sigma^2_j}{2s_n^2}-1+\frac{t^2\sigma^2_j}{2s_n^2}\right| \]

\[ \leq \left|\mathbb{E}\left(e^{itX_j/s_n}\right)-\mathbb{E}\left(1+it\frac{X_j}{s_n}-\frac{t^2}{2}\frac{X_j^2}{s_n^2}\right)\right|+\left|e^{-t^2\sigma_j^2/2s_n^2}-1+\frac{t^2\sigma^2_j}{2s_n^2}\right| \]

\[ \leq \mathbb{E}\left[\min\left(\frac{t^2X_j^2}{s_n^2},\frac{\left|tX_j\right|^3}{6s_n^3}\right)\right]+\frac{t^4\sigma_j^4}{8s_n^4} \]

\[ \leq \mathbb{E}\left[\min\left(\frac{t^2X_j^2}{s_n^2},\frac{\left|tX_j\right|^3}{6s_n^3}\right)\boldsymbol{1}_\left\{\left|X_j\right|>\epsilon s_n\right\}\right]+\mathbb{E}\left[\min\left(\frac{t^2X_j^2}{s_n^2},\frac{\left|tX_j\right|^3}{6s_n^3}\right)\boldsymbol{1}_\left\{\left|X_j\right|\leq\epsilon s_n\right\}\right]+\frac{t^4\sigma_j^4}{8s_n^4} \]

\[ \leq \mathbb{E}\left[\frac{t^2X_j^2}{s_n^2}\boldsymbol{1}_\left\{\left|X_j\right|>\epsilon s_n\right\}\right]+\mathbb{E}\left[\frac{\left|tX_j\right|^3}{6s_n^3}\boldsymbol{1}_\left\{\left|X_j\right|\leq\epsilon s_n\right\}\right] + \frac{t^4\sigma_j^4}{8s_n^4} \]

\[ \leq \frac{t^2}{s_n^2}\mathbb{E}\left[{X_j^2}\boldsymbol{1}_\left\{\left|X_j\right|>\epsilon s_n\right\}\right]+\frac{\left|t\right|^3\epsilon}{6s_n^2}\mathbb{E}\left[X_j^2\right] + \frac{t^4\sigma_j^2}{s_n^2}\underset{1\leq k\leq n}{\max}\left(\frac{\sigma_k^2}{s_n^2} \right) \]

Proof of Lindeberg-Feller CLT contd.

Then for any fixed \(t\),

\[ \left|\mathbb{E}\left(e^{itS_n/s_n}\right)-e^{-t^2/2}\right| \]

\[ =\left|\prod_{j=1}^n\mathbb{E}\left(e^{itX_j/s_n}\right)-\prod_{j=1}^n\left(e^{-t^2\sigma_j^2/2s_n^2}\right)\right| \]

\[ \leq\sum_{j=1}^n\left|\mathbb{E}\left(e^{itX_j/s_n}\right)-e^{-t^2\sigma_j^2/2s_n^2}\right| \]

\[ \leq \sum_{j=1}^n\left(\frac{t^2}{s_n^2}\mathbb{E}\left[{X_j^2}\boldsymbol{1}_\left\{\left|X_j\right|>\epsilon s_n\right\}\right]+\frac{\left|t\right|^3\epsilon}{6s_n^2}\mathbb{E}\left[X_j^2\right] + \frac{t^4\sigma_j^2}{s_n^2}\underset{1\leq k\leq n}{\max}\left(\frac{\sigma_k^2}{s_n^2} \right)\right) \]

\[ \leq\left(\frac{t^2}{s_n^2}\sum_{j=1}^n \mathbb{E}\left[{X_j^2}\boldsymbol{1}_\left\{\left|X_j\right|>\epsilon s_n\right\}\right]+\frac{\left|t\right|^3\epsilon}{6}+t^4\underset{1\leq k\leq n}{\max}\left(\frac{\sigma_k^2}{s_n^2} \right)\right) \]

\[ \rightarrow\frac{\epsilon\left|t\right|^3}{6}\,\,\,\mathrm{as}\,\,n\rightarrow\infty \]

Since, \(\epsilon>0\) is arbitrary, it follows that, \(\mathbb{E}\left(e^{itS_n/s_n}\right)\rightarrow e^{-t^2/2}\) for all \(t\) . Levy’s continuity theorem implies,

\[ \frac{S_n}{s_n}\overset{\mathcal{D}}{\longrightarrow}\mathcal{N}\left(0,1\right) \]

Only If Part.

Proof of the only if part.

\("\implies"\) Let \(\psi_j\) be the Characteristic Function of \(X_j\) . The asymptotic normality is equivalent to,

\[ \prod_{j=1}^{n}\psi_j\left(\frac{t}{s_n}\right)\rightarrow e^{-\frac{t^2}{2}} \]

Notice that,

\[ \left|\psi_j\left(\frac{t}{s_n}\right)-1\right|\leq\frac{t^2\sigma_j^2}{2s_n^2} \]

Write as \(n\rightarrow\infty\),

\[ \sum_{j=1}^{n}\left(\psi_j\left(\frac{t}{s_n}\right)-1\right)+\frac{t^2}{2} \]

\[ =\sum_{j=1}^{n}\left(\psi_j\left(\frac{t}{s_n}\right)-1-\log\psi_j\left(\frac{t}{s_n}\right)\right)+\underset{=o\left(1\right)}{\underbrace{\sum_{i=1}^n\log\psi_j\left(\frac{t}{s_n}\right)+\frac{t^2}{2}}} \]

\[ \leq \sum_{j=1}^{n}\left|\psi_j\left(\frac{t}{s_n}\right)-1\right|^2+o\left(1\right) \]

\[ \leq \underset{1\leq j\leq n}{\max}\left|\psi_j\left(\frac{t}{s_n}\right)-1 \right|\times \sum_{j=1}^{n}\left|\psi_j\left(\frac{t}{s_n}\right)-1\right|+o\left(1\right) \]

\[ \leq \underset{1\leq j\leq n}{\max}\frac{t^2\sigma_j^2}{2s_n^2}\times\sum_{j=1}^{n}\frac{t^2\sigma_j^2}{2s_n^2}+o\left(1\right)=o\left(1\right) \]

by the assumption, \(\underset{1\leq k\leq n}{\max}\left(\frac{\sigma_k^2}{s_n^2} \right)\rightarrow0\)

Proof of the only if part contd.

On the other hand, by definition of characteristic function, the above expression is, as \(n\rightarrow\infty\),

\[ o(1)= \sum_{j=1}^{n}\left(\psi_j\left(\frac{t}{s_n}\right)-1\right)+\frac{t^2}{2} \]

\[ =\sum_{j=1}^{n}\mathbb{E}\left(e^{itX_j/s_n}-1\right)+\frac{t^2}{2} \]

\[ =\sum_{j=1}^{n}\mathbb{E}\left(\cos\left(\frac{tX_j}{s_n}\right)-1\right)+\frac{t^2}{2}+i\sum_{j=1}^{n}\mathbb{E}\left(\sin\left(\frac{tX_j}{s_n}\right)\right) \]

\[ =\sum_{j=1}^{n}\mathbb{E}\left\{\left(\cos\left(\frac{tX_j}{s_n}\right)-1\right)\boldsymbol{1}_\left\{\left|X_j\right|>\epsilon s_n\right\}\right\}+\sum_{j=1}^{n}\mathbb{E}\left\{\left(\cos\left(\frac{tX_j}{s_n}\right)-1\right)\boldsymbol{1}_\left\{\left|X_j\right|\leq\epsilon s_n\right\}\right\}+\frac{t^2}{2}+\mathrm{imaginary\,part\,(immaterial)} \]

Since, \(\cos x -1\geq-\frac{x^2}{2}\) for all real \(x\),

\[ \frac{1}{s_n^2}{\sum_{i=1}^n \mathbb{E}\left(X_j^2\boldsymbol{1}_\left\{\left|X_j\right|>\epsilon s_n\right\}\right)}=1-\frac{2}{t^2}\sum_{j=1}^{n}\mathbb{E}\left(\frac{t^2X_j^2}{2s_n^2}\boldsymbol{1}_\left\{\left|X_j\right|\leq\epsilon s_n\right\}\right) \]

\[ \leq\frac{2}{t^2}\left(\frac{t^2}{2}+\sum_{j=1}^n\mathbb{E}\left\{\left(\cos\left(\frac{tX_j}{s_n}\right)-1\right)\boldsymbol{1}_\left\{\left|X_j\right|\leq\epsilon s_n\right\}\right\}\right) \]

\[ \leq\frac{2}{t^2}\left(\left|\sum_{j=1}^n\mathbb{E}\left\{\left(\cos\left(\frac{tX_j}{s_n}\right)-1\right)\boldsymbol{1}_\left\{\left|X_j\right|>\epsilon s_n\right\}\right\}\right|+o(1)\right) \]

\[ \leq\frac{2}{t^2}\sum_{j=1}^n2\mathbb{P}\left(\left|X_j\right|>\epsilon s_n\right)+o(1) \]

\[ \leq\frac{4}{t^2}\sum_{j=1}^{n}\left(\frac{\sigma_j^2}{\epsilon^2s_n^2}\right)+o(1)\,\,\,\,\mathrm{by\,Chebyshev's\,Inequality} \]

\[ \leq\frac{4}{t^2\epsilon^2}+o(1). \]

Since \(t\) can be chosen arbitrarily large, Lindeberg condition holds.

Lyapunov’s Condition.

Lyapunov’s Condition.

Suppose \(X_1,X_2,\ldots,X_n\) are independent r.v.s with mean \(0\) and variance \(\sigma_n^2\). Let \(s^2_n=\sum_{i=1}^n\sigma^2_j\) denote the variance of partial sum \(S_n=X_1+X_2+\ldots+X_n\) and \(\mathbb{E}\left(\left|X_j\right|^{2+\delta}\right)<\infty\,\,\forall j\). Then,

\[ \frac{1}{s_n^{2+\delta}}\sum_{j=1}^n\mathbb{E}\left(\left|X_j\right|^{2+\delta}\right)\longrightarrow0\,\,\,\mathrm{as}\,n\rightarrow\infty \]

for some \(\delta>0\).

Lyapunov’s Condition \(\boldsymbol{\implies}\) Lindeberg’s Condition.

Note that,

\[ \frac{1}{s_n^2}\sum_{j=1}^n\mathbb{E}\left(X_j^2\boldsymbol{1}_\left\{\left|X_j\right|>\epsilon s_n\right\}\right)=\frac{1}{s_n^2}\sum_{j=1}^n\mathbb{E}\left(X_j^2\boldsymbol{1}_\left\{\left|\frac{X_j}{\epsilon s_n}\right|>1\right\}\right)\]

\[ =\frac{1}{s_n^2}\sum_{j=1}^n\mathbb{E}\left(X_j^2\boldsymbol{1}_\left\{\frac{\left|X_j\right|^{\delta}}{\epsilon^{\delta} s_n^{\delta}}>1\right\}\right)\]

\[ \leq\frac{1}{s_n^2}\sum_{j=1}^{n}\mathbb{E}\left(X_j^2\frac{\left|X_j\right|^{\delta}}{\epsilon^{\delta} s_n^{\delta}}\right)\leq\frac{1}{\epsilon^{\delta} s_n^{\delta}}\sum_{j=1}^{n}\mathbb{E}\left(\left|X_j\right|^{2+\delta}\right)\longrightarrow0 \]

if Lyapunov’s Condition holds.

Multivariate Version.

Multivariate Lindeberg-Feller CLT.

Let \(\boldsymbol{X_1},\boldsymbol {X_2},\ldots,\boldsymbol{X_n}\) be independent random vectors with \(\mathbb{E}\left(\boldsymbol{X_j}\right)=\boldsymbol{0}\) and \(\mathrm{Var}\left(\boldsymbol{X_j}\right)=\boldsymbol{\Sigma_j}\). Suppose that, \(\frac{1}{n}\left(\boldsymbol{\Sigma_1}+\boldsymbol{\Sigma_2}+\ldots+\boldsymbol{\Sigma_n}\right)\rightarrow\boldsymbol{\Sigma}\) as \(n\rightarrow\infty\) and,

\[ \forall\epsilon>0\,\,\frac{1}{n}\sum_{j=1}^{n}\mathbb{E}\left(\left\|\boldsymbol{X_j}\right\|^2\boldsymbol{1}_{\left\{\left\|\boldsymbol{X_j}\right\|>\epsilon\sqrt{n}\right\}}\right)\longrightarrow0\,\,\,\mathrm{as}\,n\rightarrow\infty \]

Then,

\[ \frac{\boldsymbol{S_n}}{\sqrt{n}}\overset{\mathcal{D}}{\longrightarrow}\mathcal{N}_d\left(\boldsymbol{0},\boldsymbol{\Sigma}\right)\,\,\,\mathrm{as}\,n\rightarrow\infty \]

where \(\boldsymbol{S_n}=\boldsymbol{X_1}+\boldsymbol {X_2}+\ldots+\boldsymbol{X_n}\).

Proof of Multivariate Lindeberg-Feller CLT.

We have \(\boldsymbol{S_n}=\sum_{j=1}^{n}\boldsymbol{X_j}\) , where \(\boldsymbol{X_j}\sim\left(\boldsymbol{0},\boldsymbol{\Sigma_j}\right)\) independently. We shall use Cramer-Wold Device to establish the theorem. We have to show, \(\forall\boldsymbol{a}\in\mathbb{R}^d\setminus\left\{\boldsymbol{0}\right\}\) , \(\left(0,\boldsymbol{a}'\boldsymbol{\Sigma}\boldsymbol{a}\right)\).

\[ \frac{\boldsymbol{a}'\boldsymbol{S_n}}{\sqrt{n}}\overset{\mathcal{D}}{\longrightarrow}\mathcal{N}\left({0},\boldsymbol{a}'\boldsymbol{\Sigma}\boldsymbol{a}\right) \]

Define, \(Y_j=\boldsymbol{a}'\boldsymbol{X_j}\,\,\forall j=1(1)n\) . Then, \(Y_j\sim\left(0,\sigma_j^2\right)\) where \(\sigma_j^2=\boldsymbol{a}'\boldsymbol{\Sigma_j}\boldsymbol{a},\,\,\forall j=1(1)n\) . Say,

\[ \tilde{S}_n=\sum_{j=1}^nY_j,\,\,\,\,\,\,\,s_n^2=\sum_{j=1}^n\sigma_j^2=\boldsymbol{a}'\left(\sum_{j=1}^n\boldsymbol{\Sigma_j}\right)\boldsymbol{a} \]

For any \(\epsilon>0\)

\[ \frac{1}{s_n^2}{\sum_{j=1}^n \mathbb{E}\left(Y_j^2\boldsymbol{1}_\left\{\left|Y_j\right|>\epsilon s_n\right\}\right)} \]

\[ \frac{1}{s_n^2}{\sum_{j=1}^n \mathbb{E}\left(\left(\boldsymbol{a}'\boldsymbol{X_j}\boldsymbol{X_j}'\boldsymbol{a}\right)\boldsymbol{1}_\left\{\left(\boldsymbol{a}'\boldsymbol{X_j}\boldsymbol{X_j}'\boldsymbol{a}\right)>\epsilon^2 s_n^2\right\}\right)} \]

\[ \leq\frac{\left\|\boldsymbol{a}\right\|^2}{s_n^2}{\sum_{j=1}^n \mathbb{E}}\left(\left\|\boldsymbol{X_j}\right\|^2\boldsymbol{1}_{\left\{\left\|\boldsymbol{X_j}\right\|^2\geq\epsilon'^2s_n^2\right\}}\right)\,\,\,\,\mathrm{where}\,\,\,\epsilon'^2=\frac{\epsilon^2}{\left\|\boldsymbol{a}\right\|^2} \]

\[ =\frac{1}{n}{\sum_{j=1}^n \mathbb{E}}\left(\left\|\boldsymbol{X_j}\right\|^2\boldsymbol{1}_{\left\{\left\|\boldsymbol{X_j}\right\|^2\geq\epsilon'^2s_n^2\right\}}\right)\frac{\left\|\boldsymbol{a}\right\|^2}{s_n^2/n} \]

Now,

\[ \frac{{s_n}}{\sqrt{n}}\longrightarrow\sqrt{\boldsymbol{a}'\Sigma\boldsymbol{a}}=c\,\,(\mathrm{say}) \]

Then, \(\exists K\in\mathbb{N}\ni\forall n\geq K,\,\,\frac{s_n}{\sqrt{n}}>\frac{c}{2}\) \[ \implies\,\,\forall n\geq K, \,\,\,\,\frac{1}{n}{\sum_{j=1}^n \mathbb{E}}\left(\left\|\boldsymbol{X_j}\right\|^2\boldsymbol{1}_{\left\{\left\|\boldsymbol{X_j}\right\|^2\geq\epsilon'^2s_n^2\right\}}\right)\leq \frac{1}{n}{\sum_{j=1}^n \mathbb{E}}\left(\left\|\boldsymbol{X_j}\right\|^2\boldsymbol{1}_{\left\{\left\|\boldsymbol{X_j}\right\|^2\geq\epsilon''^2n\right\}}\right)\,\,\,\mathrm{where}\,\,\epsilon''=\epsilon'c/2 \]

Taking \(\limsup\) as \(n\rightarrow\infty\) on both side,we get,

\[ \frac{1}{n}{\sum_{j=1}^n \mathbb{E}}\left(\left\|\boldsymbol{X_j}\right\|^2\boldsymbol{1}_{\left\{\left\|\boldsymbol{X_j}\right\|^2\geq\epsilon'^2s_n^2\right\}}\right)\longrightarrow0\,\,\,\,\mathrm{as}\,n\rightarrow\infty \]

from the given conditions.

\[ \therefore \sum_{j=1}^n \frac{Y_j}{s_n}\overset{\mathcal{D}}{\longrightarrow}\mathcal{N}\left(0,1\right) \]

also,

\[ \frac{{s_n}}{\sqrt{n}}\longrightarrow\sqrt{\boldsymbol{a}'\Sigma\boldsymbol{a}} \]

Combining, by Slutsky’s Theorem, we get,

\[ \sum_{j=1}^n\frac{Y_j}{\sqrt{n}}\overset{\mathcal{D}}{\longrightarrow}\mathcal{N}\left(0,\boldsymbol{a}'\Sigma\boldsymbol{a}\right)\ \]

i.e.

\[ \frac{\boldsymbol{a}'\boldsymbol{S_n}}{\sqrt{n}}\overset{\mathcal{D}}{\longrightarrow}\mathcal{N}\left({0},\boldsymbol{a}'\boldsymbol{\Sigma}\boldsymbol{a}\right) \]

Thank You :)