\(u = -7x\), then \(du = -7dx\). In terms of \(dx\), \(dx = -\frac{1}{7} du\).
First we have to rewrite the integral in terms of \(u\):
\[ \int 4e^u(-\frac{1}{7}) du \]
Then we will take out constants:
\[ -\frac{4}{7} \int e^u du \]
Integrate:
\[ -\frac{4}{7}(e^u + C) \]
Then we will substitute back in terms of \(x\):
\[ -\frac{4}{7}(e^{-7x} + C) \]
For some constant \(C\).
\[ \int \left( -\frac{3150}{t^4} - 220 \right) \, dt \]
First we split integral:
\[ \int \left( -\frac{3150}{t^4} \, dt \right) - \int (220 \, dt) \]
Next we have to take out constants for both integrals:
\[ -3150 \int \left( \frac{1}{t^4} \, dt \right) - \int (220 \, dt) \]
Integrate:
\[ -3150 \left( -\frac{1}{3t^3} \right) - 220t \]
Now, We simplify:
\[ \frac{1050}{t^3} - 220t \]
Write as function \(N(t)\):
\[ N(t) = \frac{1050}{t^3} - 220t + C \]
For some constant \(C\).
Solve for \(N(t) = 6530\) where \(t = 1\):
\[ \frac{1050}{t^3} - 220t + C = 6530 \] \[ \frac{1050}{1^3} - 220(1) + C = 6530 \] \[ 1050 - 220 + C = 6530 \] \[ 830 + C = 6530 \] \[ C = 5700 \]
Function \(N(t) = \frac{1050}{t^3} - 220t + 5700\).
x2−2x−2=x+2 Set equal to 0.
x2−3x−4=0 Factor.
(x−4)(x+1)=0 Solve for x.
x=4,x=−1
Subtract the two equations.
x+2−(x2−2x−2) Simplify.
x+2−x2+2x+2 Combine the like terms.
−x2+3x+4
Then we integrate this equation using intersection points as interval.
\[ \int_{8.5}^{4.5} 2x - 9 \, dx = \left[ x^2 - 9x \right]_{8.5}^{4.5} \]
Area \(= (8.5^2 - 9(8.5)) - (4.5^2 - 9(4.5))\)
Area \(= (72.25 - 76.5) - (20.25 - 40.5)\)
Area \(= (-4.25) - (-20.25)\)
Area = 16
y=x2−2x−2,y=x+2
function_4 <- function(x)
{
-x ^ 2 + 3 * x + 4
}
integrate(function_4, lower = -1, upper = 4)
## 20.83333 with absolute error < 2.3e-13
Number of orders (\(x\)) * Lot Size (\(n\)) = 110 C= Costs
\[ C = 8.25x + 3.75 \cdot \left( \frac{110}{x^2} \right) \]
\[ C = 8.25x + 3.75 \cdot \left( \frac{55}{x} \right) \]
\[ C = 8.25x + \frac{206.25}{x} \]
To minimize costs, we need to set the derivative to zero
\[ C' = 8.25 - \frac{206.25}{x^2} \] \[ 0 = 8.25 - \frac{206.25}{x^2} \]
\[ \frac{206.25}{x^2} = 8.25 \] \[ 206.25 = 8.25x^2 \] \[ \frac{206.25}{8.25} = x^2 \] \[ 25 = x^2 \]
The number of orders per year that will minimize inventory costs is 5. The lot size is 22 because \(22 \times 5 = 110\).
\[ \int \ln(9x) \cdot x^6 \, dx \]
\(u = \ln(9x)\), and \(du = \frac{1}{x} dx\). and \(v = \frac{1}{7}x^7\), then \(dv = x^6 dx\).
Using integration by parts, we can calculate \(u \cdot v - \int v \cdot du\).
\[ \ln(9x) \cdot \frac{1}{7}x^7 - \int \frac{1}{7}x^7 \cdot \frac{1}{x} \, dx \]
Simplifying:
\[ \frac{x^7 \ln(9x)}{7} - \int \frac{x^6}{7} \, dx \]
Integrate:
\[ \frac{x^7 \ln(9x)}{7} - \left( \frac{x^7}{49} + C \right) \]
For some constant \(C\).
$f( x ) = $
function_7 <- function(x)
{
1 / (6 * x)
}
integrate(function_7, lower = 1, upper = exp(6))
## 1 with absolute error < 9.3e-05
f(x) is a probability density function on the interval [1, e ^ 6] because the integral of f(x) on the interval = 1.