Last Update:

Friday, April 19, 2024

Opening Value:

178.74

Highest Value:

179

Lowest Value:

173.44

Adj. Closing Value:

174.63

  • The forecast plot shows the forecasted Amazon stock prices for the next 12 months.

  • The plot also shows the 80% prediction interval in dark purple and the 95% prediction interval in light purple.

  • The numeric values for these forecasted values and prediction intervals are shown in the next tab.

The table below shows the forecast values and 80% and 95% prediction intervals for the 12 requested forecasts for the Amazon stock.

Point Forecast Lo 80 Hi 80 Lo 95 Hi 95
May 2024 182.7487 173.3104 192.1870 168.3141 197.1833
Jun 2024 183.1957 170.5776 195.8138 163.8980 202.4934
Jul 2024 184.6565 169.0498 200.2632 160.7881 208.5249
Aug 2024 185.3455 167.5416 203.1494 158.1168 212.5742
Sep 2024 186.6221 166.6558 206.5883 156.0863 217.1578
Oct 2024 187.4513 165.6800 209.2227 154.1549 220.7478
Nov 2024 188.6211 165.0812 212.1611 152.6199 224.6224
Dec 2024 189.5317 164.4199 214.6435 151.1265 227.9369
Jan 2025 190.6396 163.9964 217.2828 149.8924 231.3868
Feb 2025 191.5973 163.5439 219.6506 148.6933 234.5012
Mar 2025 192.6693 163.2459 222.0927 147.6701 237.6686
Apr 2025 193.6543 162.9418 224.3667 146.6837 240.6249
  • These three residual plots allow the analyst to examine the distribution of the residuals of the modeled time series.

This dashboard was created using Quarto in RStudio, and the R Language and Environment.

The dataset used to create this dashboard was downloaded from Yahoo Finance.

Software Citations

Arnold J (2024). ggthemes: Extra Themes, Scales and Geoms for ‘ggplot2’. R package version 5.1.0, https://CRAN.R-project.org/package=ggthemes.

Bache S, Wickham H (2022). magrittr: A Forward-Pipe Operator for R. R package version 2.0.3, https://CRAN.R-project.org/package=magrittr.

Hyndman R, Athanasopoulos G, Bergmeir C, Caceres G, Chhay L, O’Hara-Wild M, Petropoulos F, Razbash S, Wang E, Yasmeen F (2024). forecast: Forecasting functions for time series and linear models. R package version 8.22.0, https://pkg.robjhyndman.com/forecast/.

Hyndman RJ, Khandakar Y (2008). “Automatic time series forecasting: the forecast package for R.” Journal of Statistical Software, 27(3), 1-22. doi:10.18637/jss.v027.i03 https://doi.org/10.18637/jss.v027.i03.

Neuwirth E (2022). RColorBrewer: ColorBrewer Palettes. R package version 1.1-3, https://CRAN.R-project.org/package=RColorBrewer.

Posit team (2024). RStudio: Integrated Development Environment for R. Posit Software, PBC, Boston, MA. URL http://www.posit.co/.

R Core Team (2024). R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/.

Rinker, T. W. & Kurkiewicz, D. (2017). pacman: Package Management for R. version 0.5.0. Buffalo, New York. http://github.com/trinker/pacman

Vanderkam D, Allaire J, Owen J, Gromer D, Thieurmel B (2018). dygraphs: Interface to ‘Dygraphs’ Interactive Time Series Charting Library. R package version 1.1.1.6, https://CRAN.R-project.org/package=dygraphs.

Wickham H, Averick M, Bryan J, Chang W, McGowan LD, François R, Grolemund G, Hayes A, Henry L, Hester J, Kuhn M, Pedersen TL, Miller E, Bache SM, Müller K, Ooms J, Robinson D, Seidel DP, Spinu V, Takahashi K, Vaughan D, Wilke C, Woo K, Yutani H (2019). “Welcome to the tidyverse.” Journal of Open Source Software, 4(43), 1686. doi:10.21105/joss.01686 https://doi.org/10.21105/joss.01686.

Xie Y (2023). knitr: A General-Purpose Package for Dynamic Report Generation in R. R package version 1.45, https://yihui.org/knitr/.

Yihui Xie (2015) Dynamic Documents with R and knitr. 2nd edition. Chapman and Hall/CRC. ISBN 978-1498716963

Yihui Xie (2014) knitr: A Comprehensive Tool for Reproducible Research in R. In Victoria Stodden, Friedrich Leisch and Roger D. Peng, editors, Implementing Reproducible Computational Research. Chapman and Hall/CRC. ISBN 978-1466561595