library(WDI)
NY.GDP.MKTP.CD: Nominal GSYH
SP.POP.TOTL: populasyon
data <- WDI(country = "all",indicator =c("NY.GDP.MKTP.CD","SP.POP.TOTL"), start=2000)
library(explore)
describe_all(data)
## # A tibble: 6 × 8
## variable type na na_pct unique min mean max
## <chr> <chr> <int> <dbl> <int> <dbl> <dbl> <dbl>
## 1 country chr 0 0 266 NA NA NA
## 2 iso2c chr 0 0 266 NA NA NA
## 3 iso3c chr 0 0 262 NA NA NA
## 4 year int 0 0 24 2000 2.01e 3 2.02e 3
## 5 NY.GDP.MKTP.CD dbl 512 8 5833 13964732. 2.11e12 1.01e14
## 6 SP.POP.TOTL dbl 289 4.5 6047 9609 2.86e 8 7.95e 9
ekstra_veri <- WDI_data$country
library(tidyverse)
## ── Attaching core tidyverse packages ──────────────────────── tidyverse 2.0.0 ──
## ✔ dplyr 1.1.4 ✔ readr 2.1.5
## ✔ forcats 1.0.0 ✔ stringr 1.5.1
## ✔ ggplot2 3.5.0 ✔ tibble 3.2.1
## ✔ lubridate 1.9.3 ✔ tidyr 1.3.1
## ✔ purrr 1.0.2
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## ✖ dplyr::filter() masks stats::filter()
## ✖ dplyr::lag() masks stats::lag()
## ℹ Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors
data_ekstra <-left_join(data,ekstra_veri)
## Joining with `by = join_by(country, iso2c, iso3c)`
data_ekstra <- data_ekstra %>% filter(income !="Aggregates")
data_ekstra %>% describe_all()
## # A tibble: 12 × 8
## variable type na na_pct unique min mean max
## <chr> <chr> <int> <dbl> <int> <dbl> <dbl> <dbl>
## 1 country chr 0 0 215 NA NA NA
## 2 iso2c chr 0 0 215 NA NA NA
## 3 iso3c chr 0 0 215 NA NA NA
## 4 year int 0 0 24 2000 2012. 2.02e 3
## 5 NY.GDP.MKTP.CD dbl 438 8.5 4723 13964732. 319966608092. 2.54e13
## 6 SP.POP.TOTL dbl 215 4.2 4943 9609 32268693. 1.42e 9
## 7 region chr 0 0 7 NA NA NA
## 8 capital chr 0 0 210 NA NA NA
## 9 longitude chr 0 0 210 NA NA NA
## 10 latitude chr 0 0 210 NA NA NA
## 11 income chr 0 0 5 NA NA NA
## 12 lending chr 0 0 4 NA NA NA
veri <- data.frame(
Ulke = c("Turkiye", "ABD", "cin", "Almanya", "Fransa"),
GSYH_2000 = c(100, 200, NA, 150, 180),
GSYH_2001 = c(110, 210, 220, NA, 190),
GSYH_2002 = c(120, 220, NA, 170, 200),
GSYH_2022 = c(300, NA, 500, 350, 380)
)
veri <- pivot_longer(veri, cols = -Ulke, names_to = "Yil", values_to = "GSYH")
kayip_degerler <- data_ekstra %>% group_by(country) %>%
summarise(kayip = sum(is.na(NY.GDP.MKTP.CD)))
data <- left_join(data_ekstra, kayip_degerler)
## Joining with `by = join_by(country)`
describe_all(data)
## # A tibble: 13 × 8
## variable type na na_pct unique min mean max
## <chr> <chr> <int> <dbl> <int> <dbl> <dbl> <dbl>
## 1 country chr 0 0 215 NA NA NA
## 2 iso2c chr 0 0 215 NA NA NA
## 3 iso3c chr 0 0 215 NA NA NA
## 4 year int 0 0 24 2000 2.01e 3 2.02e 3
## 5 NY.GDP.MKTP.CD dbl 438 8.5 4723 13964732. 3.20e11 2.54e13
## 6 SP.POP.TOTL dbl 215 4.2 4943 9609 3.23e 7 1.42e 9
## 7 region chr 0 0 7 NA NA NA
## 8 capital chr 0 0 210 NA NA NA
## 9 longitude chr 0 0 210 NA NA NA
## 10 latitude chr 0 0 210 NA NA NA
## 11 income chr 0 0 5 NA NA NA
## 12 lending chr 0 0 4 NA NA NA
## 13 kayip int 0 0 14 1 2.04e 0 2.4 e 1
Almanya’yı seçelim
data_Almanya <- data %>% filter(iso2c == "DE")
library(ggplot2)
ggplot(data_Almanya,aes(x= year,y=NY.GDP.MKTP.CD))+
geom_line(colours ="blue") +
labs(tiltle = "GDP Değişimi (2000-2022)", x = "Yıl", y =
"GDP") +
theme_minimal()
## Warning in geom_line(colours = "blue"): Ignoring unknown parameters: `colours`
## Warning: Removed 1 row containing missing values or values outside the scale range
## (`geom_line()`).
##kesit veri almak
df_kesitveri <- data %>% filter(year==2022)
ggplot(df_kesitveri, aes(x= SP.POP.TOTL, y=NY.GDP.MKTP.CD)) +
geom_point() +
geom_text(label=df_kesitveri$iso2c)
## Warning: Removed 23 rows containing missing values or values outside the scale range
## (`geom_point()`).
## Warning: Removed 23 rows containing missing values or values outside the scale range
## (`geom_text()`).
toplam dünya nufusu, toplam dunya uretimi, her sene icin dunya kisi basi ne kadar uretim yapmis
dunya_datası <-data %>% group_by(year) %>%
summarise(dunyauretimi = sum(NY.GDP.MKTP.CD),
dunyanufusu = sum(SP.POP.TOTL),
kisibasiuretim = dunyauretimi/dunyanufusu)
ggplot(dunya_datası,aes(x= year, y = kisibasiuretim, colour = "red")) +
geom_line() +
labs(title = "kisi basi uretim",
y = "kisi basi uretim",
x = "sene") +
theme_linedraw()
## Warning: Removed 24 rows containing missing values or values outside the scale range
## (`geom_line()`).
data<- left_join(data,dunya_datası,by= "year")
Belirli bir ulkenin o sene icin uretimdeki payi nedir?
Belirli bir ulkenin populasyondaki payi nedir?
ulkenin senelik verimi nedir?
dat <-data%>% mutate(ulkenınuretimoranı = NY.GDP.MKTP.CD /dunyauretimi,
ulkeninpopulasyonorani = SP.POP.TOTL/dunyanufusu,
verim =dunyauretimi /dunyanufusu)
ggplot(data[985:1000,], aes(x=year, y= dunyauretimi)) +
geom_point()
## Warning: Removed 16 rows containing missing values or values outside the scale range
## (`geom_point()`).