5 Condition Report

Stimuli check

I compared these responses to the midpoint (4)

Did participants find the posts offensive?

t.test(mu = 4, exp1_5cond2clean$check_1)
## 
##  One Sample t-test
## 
## data:  exp1_5cond2clean$check_1
## t = 14, df = 228, p-value <0.0000000000000002
## alternative hypothesis: true mean is not equal to 4
## 95 percent confidence interval:
##  5.2 5.6
## sample estimates:
## mean of x 
##       5.4

Did participants find the posts a violation of Webster Springs’ rules?

t.test(mu = 4, exp1_5cond2clean$check_3)
## 
##  One Sample t-test
## 
## data:  exp1_5cond2clean$check_3
## t = 28, df = 228, p-value <0.0000000000000002
## alternative hypothesis: true mean is not equal to 4
## 95 percent confidence interval:
##  6.0 6.3
## sample estimates:
## mean of x 
##       6.2
table(exp1_5cond2raw$attn_chk)
## 
##   6 
## 317
(mctable <- with(exp1_5cond2raw, table(cond_label, manip_check)))
##             manip_check
## cond_label   -2 -1  0  1  2
##   1.HighD     2  3  6 10 38
##   2.RelD-In   3 10  3 46  0
##   3.RelD-Out  4  3 41 15  0
##   4.LowD-In   4 57  2  3  1
##   5.LowD-Out 50  7  3  5  1
row <- 1
responseper <- vector("list")
for(row in 1:nrow(mctable)){
  thisname <- rownames(mctable)[row]
  rowinfo <- mctable[row,]
  sumtotal <- sum(mctable[row,])
  response <- t(as.data.frame(rowinfo/sumtotal))
  rownames(response) <- thisname
  responseper[[row]] <- response
}
responseper
## [[1]]
##            -2    -1   0    1    2
## 1.HighD 0.034 0.051 0.1 0.17 0.64
## 
## [[2]]
##              -2   -1     0    1 2
## 2.RelD-In 0.048 0.16 0.048 0.74 0
## 
## [[3]]
##               -2    -1    0    1 2
## 3.RelD-Out 0.063 0.048 0.65 0.24 0
## 
## [[4]]
##             -2   -1    0     1     2
## 4.LowD-In 0.06 0.85 0.03 0.045 0.015
## 
## [[5]]
##              -2   -1     0     1     2
## 5.LowD-Out 0.76 0.11 0.045 0.076 0.015

All 5 conditions

Main effects and scale information

Post hoc tests

## $Tightness
##   Tukey multiple comparisons of means
##     95% family-wise confidence level
## 
## Fit: aov(formula = y ~ cond_label, data = exp1_5cond2clean)
## 
## $cond_label
##                         diff   lwr  upr p adj
## 2.RelD-In-1.HighD      0.989  0.41 1.57  0.00
## 3.RelD-Out-1.HighD     0.846  0.25 1.45  0.00
## 4.LowD-In-1.HighD      1.200  0.64 1.76  0.00
## 5.LowD-Out-1.HighD     1.163  0.59 1.73  0.00
## 3.RelD-Out-2.RelD-In  -0.143 -0.71 0.43  0.96
## 4.LowD-In-2.RelD-In    0.211 -0.31 0.73  0.80
## 5.LowD-Out-2.RelD-In   0.174 -0.36 0.71  0.90
## 4.LowD-In-3.RelD-Out   0.354 -0.19 0.90  0.38
## 5.LowD-Out-3.RelD-Out  0.317 -0.24 0.88  0.52
## 5.LowD-Out-4.LowD-In  -0.037 -0.55 0.47  1.00
## 
## 
## $Status
##   Tukey multiple comparisons of means
##     95% family-wise confidence level
## 
## Fit: aov(formula = y ~ cond_label, data = exp1_5cond2clean)
## 
## $cond_label
##                         diff   lwr  upr p adj
## 2.RelD-In-1.HighD      0.026 -0.86 0.91  1.00
## 3.RelD-Out-1.HighD    -0.118 -1.03 0.80  1.00
## 4.LowD-In-1.HighD      0.214 -0.64 1.07  0.96
## 5.LowD-Out-1.HighD    -0.054 -0.93 0.82  1.00
## 3.RelD-Out-2.RelD-In  -0.144 -1.01 0.72  0.99
## 4.LowD-In-2.RelD-In    0.189 -0.61 0.99  0.97
## 5.LowD-Out-2.RelD-In  -0.080 -0.90 0.74  1.00
## 4.LowD-In-3.RelD-Out   0.333 -0.50 1.16  0.81
## 5.LowD-Out-3.RelD-Out  0.064 -0.79 0.92  1.00
## 5.LowD-Out-4.LowD-In  -0.269 -1.05 0.51  0.88
## 
## 
## $Domin.
##   Tukey multiple comparisons of means
##     95% family-wise confidence level
## 
## Fit: aov(formula = y ~ cond_label, data = exp1_5cond2clean)
## 
## $cond_label
##                         diff   lwr  upr p adj
## 2.RelD-In-1.HighD      0.096 -0.73 0.92  1.00
## 3.RelD-Out-1.HighD    -0.180 -1.03 0.67  0.98
## 4.LowD-In-1.HighD      0.014 -0.78 0.80  1.00
## 5.LowD-Out-1.HighD     0.050 -0.76 0.86  1.00
## 3.RelD-Out-2.RelD-In  -0.276 -1.08 0.53  0.88
## 4.LowD-In-2.RelD-In   -0.082 -0.82 0.66  1.00
## 5.LowD-Out-2.RelD-In  -0.046 -0.81 0.72  1.00
## 4.LowD-In-3.RelD-Out   0.194 -0.58 0.97  0.96
## 5.LowD-Out-3.RelD-Out  0.230 -0.56 1.02  0.93
## 5.LowD-Out-4.LowD-In   0.036 -0.69 0.76  1.00
## 
## 
## $Monitor
##   Tukey multiple comparisons of means
##     95% family-wise confidence level
## 
## Fit: aov(formula = y ~ cond_label, data = exp1_5cond2clean)
## 
## $cond_label
##                         diff   lwr  upr p adj
## 2.RelD-In-1.HighD      0.730 -0.20 1.66  0.20
## 3.RelD-Out-1.HighD     0.717 -0.24 1.67  0.24
## 4.LowD-In-1.HighD      0.498 -0.39 1.39  0.54
## 5.LowD-Out-1.HighD     0.570 -0.34 1.48  0.42
## 3.RelD-Out-2.RelD-In  -0.013 -0.92 0.89  1.00
## 4.LowD-In-2.RelD-In   -0.232 -1.07 0.60  0.94
## 5.LowD-Out-2.RelD-In  -0.160 -1.02 0.70  0.99
## 4.LowD-In-3.RelD-Out  -0.220 -1.09 0.65  0.96
## 5.LowD-Out-3.RelD-Out -0.147 -1.04 0.74  0.99
## 5.LowD-Out-4.LowD-In   0.072 -0.74 0.89  1.00
## 
## 
## $SOP
##   Tukey multiple comparisons of means
##     95% family-wise confidence level
## 
## Fit: aov(formula = y ~ cond_label, data = exp1_5cond2clean)
## 
## $cond_label
##                          diff   lwr  upr p adj
## 2.RelD-In-1.HighD      0.1823 -0.57 0.93  0.96
## 3.RelD-Out-1.HighD     0.0092 -0.77 0.78  1.00
## 4.LowD-In-1.HighD     -0.0265 -0.75 0.69  1.00
## 5.LowD-Out-1.HighD    -0.1387 -0.88 0.60  0.99
## 3.RelD-Out-2.RelD-In  -0.1731 -0.91 0.56  0.97
## 4.LowD-In-2.RelD-In   -0.2089 -0.89 0.47  0.91
## 5.LowD-Out-2.RelD-In  -0.3210 -1.02 0.37  0.71
## 4.LowD-In-3.RelD-Out  -0.0357 -0.74 0.67  1.00
## 5.LowD-Out-3.RelD-Out -0.1479 -0.87 0.57  0.98
## 5.LowD-Out-4.LowD-In  -0.1121 -0.77 0.55  0.99
## 
## 
## $Affil.
##   Tukey multiple comparisons of means
##     95% family-wise confidence level
## 
## Fit: aov(formula = y ~ cond_label, data = exp1_5cond2clean)
## 
## $cond_label
##                         diff   lwr  upr p adj
## 2.RelD-In-1.HighD      0.234 -0.54 1.01  0.92
## 3.RelD-Out-1.HighD    -0.029 -0.83 0.77  1.00
## 4.LowD-In-1.HighD     -0.037 -0.78 0.71  1.00
## 5.LowD-Out-1.HighD     0.220 -0.54 0.98  0.93
## 3.RelD-Out-2.RelD-In  -0.263 -1.02 0.49  0.87
## 4.LowD-In-2.RelD-In   -0.271 -0.97 0.43  0.82
## 5.LowD-Out-2.RelD-In  -0.015 -0.73 0.70  1.00
## 4.LowD-In-3.RelD-Out  -0.008 -0.73 0.72  1.00
## 5.LowD-Out-3.RelD-Out  0.249 -0.50 0.99  0.89
## 5.LowD-Out-4.LowD-In   0.257 -0.43 0.94  0.84
## 
## 
## $Block
##   Tukey multiple comparisons of means
##     95% family-wise confidence level
## 
## Fit: aov(formula = y ~ cond_label, data = exp1_5cond2clean)
## 
## $cond_label
##                         diff    lwr  upr p adj
## 2.RelD-In-1.HighD      0.221 -0.029 0.47  0.11
## 3.RelD-Out-1.HighD     0.126 -0.131 0.38  0.66
## 4.LowD-In-1.HighD      0.101 -0.138 0.34  0.77
## 5.LowD-Out-1.HighD     0.191 -0.054 0.44  0.20
## 3.RelD-Out-2.RelD-In  -0.095 -0.339 0.15  0.82
## 4.LowD-In-2.RelD-In   -0.120 -0.345 0.11  0.59
## 5.LowD-Out-2.RelD-In  -0.030 -0.261 0.20  1.00
## 4.LowD-In-3.RelD-Out  -0.025 -0.259 0.21  1.00
## 5.LowD-Out-3.RelD-Out  0.065 -0.175 0.30  0.95
## 5.LowD-Out-4.LowD-In   0.090 -0.130 0.31  0.79
## 
## 
## $Admin
##   Tukey multiple comparisons of means
##     95% family-wise confidence level
## 
## Fit: aov(formula = y ~ cond_label, data = exp1_5cond2clean)
## 
## $cond_label
##                         diff   lwr  upr p adj
## 2.RelD-In-1.HighD      0.251 -0.36 0.87  0.79
## 3.RelD-Out-1.HighD     0.371 -0.26 1.01  0.49
## 4.LowD-In-1.HighD     -0.079 -0.67 0.51  1.00
## 5.LowD-Out-1.HighD     0.080 -0.52 0.68  1.00
## 3.RelD-Out-2.RelD-In   0.120 -0.48 0.72  0.98
## 4.LowD-In-2.RelD-In   -0.330 -0.88 0.22  0.47
## 5.LowD-Out-2.RelD-In  -0.171 -0.74 0.40  0.92
## 4.LowD-In-3.RelD-Out  -0.451 -1.03 0.13  0.20
## 5.LowD-Out-3.RelD-Out -0.291 -0.88 0.30  0.66
## 5.LowD-Out-4.LowD-In   0.160 -0.38 0.70  0.93
## 
## 
## $`Admin-Block`
##   Tukey multiple comparisons of means
##     95% family-wise confidence level
## 
## Fit: aov(formula = y ~ cond_label, data = exp1_5cond2clean)
## 
## $cond_label
##                         diff   lwr  upr p adj
## 2.RelD-In-1.HighD      0.459 -0.59 1.51  0.75
## 3.RelD-Out-1.HighD     0.784 -0.30 1.87  0.27
## 4.LowD-In-1.HighD     -0.041 -1.05 0.96  1.00
## 5.LowD-Out-1.HighD     0.439 -0.59 1.47  0.77
## 3.RelD-Out-2.RelD-In   0.325 -0.70 1.35  0.91
## 4.LowD-In-2.RelD-In   -0.500 -1.44 0.44  0.59
## 5.LowD-Out-2.RelD-In  -0.020 -0.99 0.95  1.00
## 4.LowD-In-3.RelD-Out  -0.825 -1.81 0.16  0.15
## 5.LowD-Out-3.RelD-Out -0.345 -1.35 0.66  0.88
## 5.LowD-Out-4.LowD-In   0.480 -0.44 1.40  0.61
## 
## 
## $`Admin-Kick`
##   Tukey multiple comparisons of means
##     95% family-wise confidence level
## 
## Fit: aov(formula = y ~ cond_label, data = exp1_5cond2clean)
## 
## $cond_label
##                         diff   lwr  upr p adj
## 2.RelD-In-1.HighD      0.177 -0.86 1.22  0.99
## 3.RelD-Out-1.HighD     0.451 -0.62 1.52  0.78
## 4.LowD-In-1.HighD     -0.381 -1.38 0.62  0.83
## 5.LowD-Out-1.HighD     0.111 -0.91 1.13  1.00
## 3.RelD-Out-2.RelD-In   0.274 -0.74 1.29  0.95
## 4.LowD-In-2.RelD-In   -0.558 -1.49 0.38  0.47
## 5.LowD-Out-2.RelD-In  -0.066 -1.03 0.89  1.00
## 4.LowD-In-3.RelD-Out  -0.832 -1.81 0.14  0.13
## 5.LowD-Out-3.RelD-Out -0.340 -1.34 0.66  0.88
## 5.LowD-Out-4.LowD-In   0.492 -0.42 1.41  0.58
## 
## 
## $`Admin-Report`
##   Tukey multiple comparisons of means
##     95% family-wise confidence level
## 
## Fit: aov(formula = y ~ cond_label, data = exp1_5cond2clean)
## 
## $cond_label
##                         diff   lwr  upr p adj
## 2.RelD-In-1.HighD     -0.523 -1.60 0.55  0.67
## 3.RelD-Out-1.HighD     0.316 -0.79 1.43  0.94
## 4.LowD-In-1.HighD     -0.248 -1.28 0.78  0.96
## 5.LowD-Out-1.HighD    -0.044 -1.10 1.01  1.00
## 3.RelD-Out-2.RelD-In   0.839 -0.21 1.89  0.19
## 4.LowD-In-2.RelD-In    0.275 -0.69 1.24  0.94
## 5.LowD-Out-2.RelD-In   0.479 -0.52 1.47  0.68
## 4.LowD-In-3.RelD-Out  -0.564 -1.57 0.44  0.54
## 5.LowD-Out-3.RelD-Out -0.360 -1.39 0.67  0.87
## 5.LowD-Out-4.LowD-In   0.204 -0.74 1.15  0.98
## 
## 
## $`Admin-Pin`
##   Tukey multiple comparisons of means
##     95% family-wise confidence level
## 
## Fit: aov(formula = y ~ cond_label, data = exp1_5cond2clean)
## 
## $cond_label
##                         diff   lwr   upr p adj
## 2.RelD-In-1.HighD      0.560 -0.29 1.408  0.37
## 3.RelD-Out-1.HighD    -0.127 -1.00 0.748  0.99
## 4.LowD-In-1.HighD      0.062 -0.75 0.875  1.00
## 5.LowD-Out-1.HighD    -0.167 -1.00 0.665  0.98
## 3.RelD-Out-2.RelD-In  -0.687 -1.52 0.143  0.16
## 4.LowD-In-2.RelD-In   -0.498 -1.26 0.266  0.38
## 5.LowD-Out-2.RelD-In  -0.727 -1.51 0.057  0.08
## 4.LowD-In-3.RelD-Out   0.189 -0.61 0.984  0.97
## 5.LowD-Out-3.RelD-Out -0.040 -0.85 0.774  1.00
## 5.LowD-Out-4.LowD-In  -0.229 -0.98 0.517  0.92
## 
## 
## $`Admin-Upvote`
##   Tukey multiple comparisons of means
##     95% family-wise confidence level
## 
## Fit: aov(formula = y ~ cond_label, data = exp1_5cond2clean)
## 
## $cond_label
##                         diff    lwr   upr p adj
## 2.RelD-In-1.HighD      0.652 -0.076 1.380  0.10
## 3.RelD-Out-1.HighD     0.400 -0.352 1.152  0.59
## 4.LowD-In-1.HighD      0.125 -0.574 0.824  0.99
## 5.LowD-Out-1.HighD     0.040 -0.675 0.755  1.00
## 3.RelD-Out-2.RelD-In  -0.252 -0.965 0.461  0.87
## 4.LowD-In-2.RelD-In   -0.527 -1.183 0.129  0.18
## 5.LowD-Out-2.RelD-In  -0.612 -1.286 0.062  0.09
## 4.LowD-In-3.RelD-Out  -0.275 -0.958 0.408  0.80
## 5.LowD-Out-3.RelD-Out -0.360 -1.060 0.340  0.62
## 5.LowD-Out-4.LowD-In  -0.085 -0.727 0.557  1.00
## 
## 
## $`Admin-Monitor`
##   Tukey multiple comparisons of means
##     95% family-wise confidence level
## 
## Fit: aov(formula = y ~ cond_label, data = exp1_5cond2clean)
## 
## $cond_label
##                          diff   lwr  upr p adj
## 2.RelD-In-1.HighD      0.1810 -0.68 1.05  0.98
## 3.RelD-Out-1.HighD     0.4027 -0.49 1.30  0.73
## 4.LowD-In-1.HighD      0.0063 -0.82 0.84  1.00
## 5.LowD-Out-1.HighD     0.1027 -0.75 0.95  1.00
## 3.RelD-Out-2.RelD-In   0.2217 -0.62 1.07  0.95
## 4.LowD-In-2.RelD-In   -0.1747 -0.95 0.60  0.97
## 5.LowD-Out-2.RelD-In  -0.0783 -0.88 0.72  1.00
## 4.LowD-In-3.RelD-Out  -0.3964 -1.21 0.41  0.66
## 5.LowD-Out-3.RelD-Out -0.3000 -1.13 0.53  0.86
## 5.LowD-Out-4.LowD-In   0.0964 -0.66 0.86  1.00
## 
## 
## $`Admin-EncourageOthersReport`
##   Tukey multiple comparisons of means
##     95% family-wise confidence level
## 
## Fit: aov(formula = y ~ cond_label, data = exp1_5cond2clean)
## 
## $cond_label
##                         diff   lwr  upr p adj
## 2.RelD-In-1.HighD      0.028 -1.07 1.12  1.00
## 3.RelD-Out-1.HighD     0.344 -0.78 1.47  0.92
## 4.LowD-In-1.HighD      0.080 -0.97 1.13  1.00
## 5.LowD-Out-1.HighD     0.699 -0.37 1.77  0.38
## 3.RelD-Out-2.RelD-In   0.316 -0.75 1.39  0.93
## 4.LowD-In-2.RelD-In    0.052 -0.93 1.04  1.00
## 5.LowD-Out-2.RelD-In   0.671 -0.34 1.68  0.36
## 4.LowD-In-3.RelD-Out  -0.264 -1.29 0.76  0.95
## 5.LowD-Out-3.RelD-Out  0.355 -0.69 1.40  0.88
## 5.LowD-Out-4.LowD-In   0.619 -0.34 1.58  0.39

Logistic regression

Block

## 
## Call:
## glm(formula = block ~ cond_label, family = "binomial", data = exp1_5cond2clean)
## 
## Coefficients:
##                      Estimate Std. Error z value Pr(>|z|)  
## (Intercept)             0.613      0.344    1.78    0.075 .
## cond_label2.RelD-In     1.284      0.557    2.31    0.021 *
## cond_label3.RelD-Out    0.624      0.512    1.22    0.223  
## cond_label4.LowD-In     0.486      0.462    1.05    0.294  
## cond_label5.LowD-Out    1.045      0.517    2.02    0.043 *
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 240.36  on 228  degrees of freedom
## Residual deviance: 233.20  on 224  degrees of freedom
## AIC: 243.2
## 
## Number of Fisher Scoring iterations: 4
##          (Intercept)  cond_label2.RelD-In cond_label3.RelD-Out  cond_label4.LowD-In cond_label5.LowD-Out 
##                  1.8                  3.6                  1.9                  1.6                  2.8

With controls

summary(glm(block~cond_label+gender+morality+Age+check_1+check_3, exp1_5cond2clean, family = "binomial"))
## 
## Call:
## glm(formula = block ~ cond_label + gender + morality + Age + 
##     check_1 + check_3, family = "binomial", data = exp1_5cond2clean)
## 
## Coefficients:
##                          Estimate Std. Error z value Pr(>|z|)    
## (Intercept)              -2.92857    1.57205   -1.86    0.062 .  
## cond_label2.RelD-In       1.30957    0.64688    2.02    0.043 *  
## cond_label3.RelD-Out      0.36973    0.61226    0.60    0.546    
## cond_label4.LowD-In       0.41406    0.56714    0.73    0.465    
## cond_label5.LowD-Out      1.16855    0.60150    1.94    0.052 .  
## gender                   -0.08637    0.33284   -0.26    0.795    
## morality"Benevolence"    -0.98148    1.32254   -0.74    0.458    
## morality"Hedonism"       -2.36198    1.77278   -1.33    0.183    
## morality"Power"          -1.97303    1.76385   -1.12    0.263    
## morality"Security"       -1.15052    1.18202   -0.97    0.330    
## morality"Self-direction" -1.84852    1.20425   -1.53    0.125    
## morality"Stimulation"    -2.37729    1.37661   -1.73    0.084 .  
## morality"Tradition"      -0.01195    1.58358   -0.01    0.994    
## morality"Universalism"   -1.88761    1.21202   -1.56    0.119    
## Age                      -0.00676    0.01510   -0.45    0.654    
## check_1                   0.06987    0.15555    0.45    0.653    
## check_3                   0.84807    0.20060    4.23 0.000024 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 240.36  on 228  degrees of freedom
## Residual deviance: 189.79  on 212  degrees of freedom
## AIC: 223.8
## 
## Number of Fisher Scoring iterations: 5

Graphs

Full scale measures

Controls

Full list

## $Tightness
## 
## Call:
## lm(formula = formula_list[[variable]], data = data)
## 
## Residuals:
##    Min     1Q Median     3Q    Max 
## -3.029 -0.589  0.000  0.582  2.993 
## 
## Coefficients:
##                          Estimate Std. Error t value        Pr(>|t|)    
## (Intercept)               3.49549    0.47370    7.38 0.0000000000041 ***
## cond_label2.RelD-In       0.98939    0.21034    4.70 0.0000047302165 ***
## cond_label3.RelD-Out      0.74532    0.22245    3.35         0.00096 ***
## cond_label4.LowD-In       1.23759    0.20578    6.01 0.0000000083522 ***
## cond_label5.LowD-Out      1.21558    0.20851    5.83 0.0000000216889 ***
## gender                   -0.21013    0.11878   -1.77         0.07840 .  
## Age                      -0.00944    0.00543   -1.74         0.08363 .  
## Race1,2                  -0.32194    0.56202   -0.57         0.56740    
## Race1,2,5                 0.98011    0.95940    1.02         0.30820    
## Race1,3                   0.76922    0.98683    0.78         0.43660    
## Race1,6                   0.01967    0.67837    0.03         0.97690    
## Race2                     0.05744    0.19765    0.29         0.77164    
## Race2,7                  -0.29647    0.95258   -0.31         0.75595    
## Race3                     0.12722    0.23773    0.54         0.59313    
## Race5                     0.50262    0.96847    0.52         0.60434    
## Race6                     0.79201    0.95621    0.83         0.40849    
## Race7                     0.23058    0.48240    0.48         0.63318    
## morality"Benevolence"    -0.57745    0.32775   -1.76         0.07961 .  
## morality"Hedonism"       -0.48090    0.60929   -0.79         0.43087    
## morality"Power"           1.01691    0.60053    1.69         0.09193 .  
## morality"Security"       -0.17580    0.27683   -0.64         0.52611    
## morality"Self-direction" -0.24559    0.29277   -0.84         0.40256    
## morality"Stimulation"    -0.60095    0.39772   -1.51         0.13235    
## morality"Tradition"       0.11882    0.39018    0.30         0.76104    
## morality"Universalism"   -0.30988    0.30520   -1.02         0.31116    
## check_1                  -0.00410    0.05408   -0.08         0.93962    
## check_3                   0.16992    0.06895    2.46         0.01456 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.93 on 202 degrees of freedom
## Multiple R-squared:  0.283,  Adjusted R-squared:  0.19 
## F-statistic: 3.06 on 26 and 202 DF,  p-value: 0.00000487
## 
## 
## $Status
## 
## Call:
## lm(formula = formula_list[[variable]], data = data)
## 
## Residuals:
##    Min     1Q Median     3Q    Max 
## -2.348 -0.905 -0.205  0.734  4.344 
## 
## Coefficients:
##                          Estimate Std. Error t value          Pr(>|t|)    
## (Intercept)               5.41987    0.67448    8.04 0.000000000000077 ***
## cond_label2.RelD-In       0.03169    0.29950    0.11           0.91585    
## cond_label3.RelD-Out      0.20655    0.31673    0.65           0.51506    
## cond_label4.LowD-In       0.21188    0.29300    0.72           0.47042    
## cond_label5.LowD-Out      0.00531    0.29688    0.02           0.98575    
## gender                    0.06269    0.16913    0.37           0.71129    
## Age                      -0.00523    0.00773   -0.68           0.49953    
## Race1,2                  -1.05815    0.80024   -1.32           0.18756    
## Race1,2,5                 3.71234    1.36605    2.72           0.00715 ** 
## Race1,3                  -1.21979    1.40510   -0.87           0.38636    
## Race1,6                  -0.32354    0.96589   -0.33           0.73800    
## Race2                     1.05457    0.28143    3.75           0.00023 ***
## Race2,7                  -0.31992    1.35633   -0.24           0.81377    
## Race3                     0.09278    0.33849    0.27           0.78429    
## Race5                     1.99991    1.37896    1.45           0.14853    
## Race6                    -1.26016    1.36150   -0.93           0.35577    
## Race7                     0.65679    0.68686    0.96           0.34011    
## morality"Benevolence"    -0.60513    0.46667   -1.30           0.19621    
## morality"Hedonism"       -1.42731    0.86754   -1.65           0.10147    
## morality"Power"          -0.40109    0.85506   -0.47           0.63952    
## morality"Security"       -0.47921    0.39417   -1.22           0.22550    
## morality"Self-direction" -0.47586    0.41686   -1.14           0.25501    
## morality"Stimulation"    -0.19957    0.56629   -0.35           0.72489    
## morality"Tradition"       0.47627    0.55556    0.86           0.39231    
## morality"Universalism"   -0.61898    0.43456   -1.42           0.15588    
## check_1                  -0.09904    0.07700   -1.29           0.19983    
## check_3                  -0.32203    0.09817   -3.28           0.00122 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.3 on 202 degrees of freedom
## Multiple R-squared:  0.262,  Adjusted R-squared:  0.168 
## F-statistic: 2.76 on 26 and 202 DF,  p-value: 0.0000343
## 
## 
## $Domin.
## 
## Call:
## lm(formula = formula_list[[variable]], data = data)
## 
## Residuals:
##    Min     1Q Median     3Q    Max 
## -2.633 -0.949  0.000  0.927  3.369 
## 
## Coefficients:
##                          Estimate Std. Error t value   Pr(>|t|)    
## (Intercept)               3.63563    0.68083    5.34 0.00000025 ***
## cond_label2.RelD-In       0.15489    0.30231    0.51      0.609    
## cond_label3.RelD-Out     -0.31727    0.31971   -0.99      0.322    
## cond_label4.LowD-In       0.15534    0.29576    0.53      0.600    
## cond_label5.LowD-Out      0.11886    0.29967    0.40      0.692    
## gender                    0.02776    0.17072    0.16      0.871    
## Age                      -0.00933    0.00780   -1.20      0.233    
## Race1,2                  -0.85174    0.80776   -1.05      0.293    
## Race1,2,5                -2.13589    1.37889   -1.55      0.123    
## Race1,3                   1.64776    1.41831    1.16      0.247    
## Race1,6                   1.18837    0.97497    1.22      0.224    
## Race2                    -0.05322    0.28408   -0.19      0.852    
## Race2,7                   0.26679    1.36908    0.19      0.846    
## Race3                    -0.01329    0.34167   -0.04      0.969    
## Race5                    -0.53456    1.39193   -0.38      0.701    
## Race6                    -0.69302    1.37430   -0.50      0.615    
## Race7                    -1.14964    0.69332   -1.66      0.099 .  
## morality"Benevolence"    -0.32665    0.47105   -0.69      0.489    
## morality"Hedonism"        0.88538    0.87570    1.01      0.313    
## morality"Power"           1.35500    0.86310    1.57      0.118    
## morality"Security"       -0.30673    0.39788   -0.77      0.442    
## morality"Self-direction" -0.75516    0.42078   -1.79      0.074 .  
## morality"Stimulation"    -0.75260    0.57162   -1.32      0.189    
## morality"Tradition"      -0.66833    0.56078   -1.19      0.235    
## morality"Universalism"   -0.53814    0.43864   -1.23      0.221    
## check_1                   0.04032    0.07773    0.52      0.604    
## check_3                  -0.00609    0.09909   -0.06      0.951    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.3 on 202 degrees of freedom
## Multiple R-squared:  0.125,  Adjusted R-squared:  0.0126 
## F-statistic: 1.11 on 26 and 202 DF,  p-value: 0.33
## 
## 
## $Monitor
## 
## Call:
## lm(formula = formula_list[[variable]], data = data)
## 
## Residuals:
##    Min     1Q Median     3Q    Max 
## -3.416 -0.888  0.026  1.031  3.079 
## 
## Coefficients:
##                          Estimate Std. Error t value  Pr(>|t|)    
## (Intercept)               3.54149    0.77960    4.54 0.0000095 ***
## cond_label2.RelD-In       0.69020    0.34617    1.99     0.048 *  
## cond_label3.RelD-Out      0.60629    0.36609    1.66     0.099 .  
## cond_label4.LowD-In       0.49585    0.33866    1.46     0.145    
## cond_label5.LowD-Out      0.58065    0.34315    1.69     0.092 .  
## gender                   -0.12346    0.19549   -0.63     0.528    
## Age                      -0.00862    0.00894   -0.96     0.336    
## Race1,2                  -0.58330    0.92495   -0.63     0.529    
## Race1,2,5                -1.10403    1.57894   -0.70     0.485    
## Race1,3                   0.68145    1.62408    0.42     0.675    
## Race1,6                   0.62649    1.11642    0.56     0.575    
## Race2                     0.36937    0.32529    1.14     0.258    
## Race2,7                  -0.94817    1.56771   -0.60     0.546    
## Race3                    -0.10478    0.39124   -0.27     0.789    
## Race5                    -0.43324    1.59387   -0.27     0.786    
## Race6                     1.83837    1.57368    1.17     0.244    
## Race7                     0.65950    0.79391    0.83     0.407    
## morality"Benevolence"    -0.25831    0.53939   -0.48     0.633    
## morality"Hedonism"        0.52281    1.00274    0.52     0.603    
## morality"Power"          -0.62837    0.98832   -0.64     0.526    
## morality"Security"       -0.48824    0.45560   -1.07     0.285    
## morality"Self-direction" -0.34162    0.48183   -0.71     0.479    
## morality"Stimulation"    -1.25783    0.65455   -1.92     0.056 .  
## morality"Tradition"       0.08756    0.64214    0.14     0.892    
## morality"Universalism"   -0.36432    0.50228   -0.73     0.469    
## check_1                   0.07443    0.08900    0.84     0.404    
## check_3                   0.11967    0.11347    1.05     0.293    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.5 on 202 degrees of freedom
## Multiple R-squared:  0.112,  Adjusted R-squared:  -0.00276 
## F-statistic: 0.976 on 26 and 202 DF,  p-value: 0.503
## 
## 
## $SOP
## 
## Call:
## lm(formula = formula_list[[variable]], data = data)
## 
## Residuals:
##    Min     1Q Median     3Q    Max 
## -3.236 -0.682  0.015  0.769  2.859 
## 
## Coefficients:
##                          Estimate Std. Error t value      Pr(>|t|)    
## (Intercept)               4.29948    0.63493    6.77 0.00000000014 ***
## cond_label2.RelD-In       0.15763    0.28193    0.56         0.577    
## cond_label3.RelD-Out      0.05681    0.29816    0.19         0.849    
## cond_label4.LowD-In      -0.10860    0.27582   -0.39         0.694    
## cond_label5.LowD-Out     -0.21324    0.27947   -0.76         0.446    
## gender                    0.31093    0.15921    1.95         0.052 .  
## Age                      -0.01010    0.00728   -1.39         0.167    
## Race1,2                  -0.84962    0.75331   -1.13         0.261    
## Race1,2,5                 2.68769    1.28594    2.09         0.038 *  
## Race1,3                   0.47617    1.32270    0.36         0.719    
## Race1,6                   0.83935    0.90925    0.92         0.357    
## Race2                    -0.23127    0.26493   -0.87         0.384    
## Race2,7                   0.75791    1.27679    0.59         0.553    
## Race3                    -0.08942    0.31864   -0.28         0.779    
## Race5                     0.50434    1.29810    0.39         0.698    
## Race6                     0.59324    1.28166    0.46         0.644    
## Race7                    -0.25131    0.64658   -0.39         0.698    
## morality"Benevolence"     0.11070    0.43930    0.25         0.801    
## morality"Hedonism"       -0.35524    0.81666   -0.43         0.664    
## morality"Power"          -0.03371    0.80492   -0.04         0.967    
## morality"Security"        0.21889    0.37105    0.59         0.556    
## morality"Self-direction"  0.17739    0.39242    0.45         0.652    
## morality"Stimulation"     0.49933    0.53308    0.94         0.350    
## morality"Tradition"       0.71823    0.52298    1.37         0.171    
## morality"Universalism"   -0.01713    0.40907   -0.04         0.967    
## check_1                   0.00398    0.07249    0.05         0.956    
## check_3                  -0.04537    0.09241   -0.49         0.624    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.2 on 202 degrees of freedom
## Multiple R-squared:  0.0872, Adjusted R-squared:  -0.0303 
## F-statistic: 0.742 on 26 and 202 DF,  p-value: 0.814
## 
## 
## $Affil.
## 
## Call:
## lm(formula = formula_list[[variable]], data = data)
## 
## Residuals:
##    Min     1Q Median     3Q    Max 
## -2.281 -0.667 -0.159  0.589  3.616 
## 
## Coefficients:
##                            Estimate Std. Error t value             Pr(>|t|)    
## (Intercept)               6.4343590  0.5276813   12.19 < 0.0000000000000002 ***
## cond_label2.RelD-In       0.2411577  0.2343109    1.03              0.30461    
## cond_label3.RelD-Out      0.2612614  0.2477950    1.05              0.29298    
## cond_label4.LowD-In      -0.0000819  0.2292288    0.00              0.99972    
## cond_label5.LowD-Out      0.3126411  0.2322658    1.35              0.17980    
## gender                   -0.2014307  0.1323181   -1.52              0.12949    
## Age                       0.0016126  0.0060479    0.27              0.79001    
## Race1,2                  -0.5915194  0.6260621   -0.94              0.34588    
## Race1,2,5                 1.4653796  1.0687223    1.37              0.17185    
## Race1,3                  -0.3119000  1.0992743   -0.28              0.77691    
## Race1,6                  -0.4771922  0.7556629   -0.63              0.52844    
## Race2                     0.6390465  0.2201755    2.90              0.00411 ** 
## Race2,7                  -0.6146408  1.0611196   -0.58              0.56307    
## Race3                    -0.2740485  0.2648179   -1.03              0.30197    
## Race5                     1.8258863  1.0788290    1.69              0.09210 .  
## Race6                    -0.2993241  1.0651653   -0.28              0.77899    
## Race7                     0.2304283  0.5373652    0.43              0.66852    
## morality"Benevolence"    -0.9366757  0.3650944   -2.57              0.01103 *  
## morality"Hedonism"       -1.5014148  0.6787172   -2.21              0.02808 *  
## morality"Power"          -1.2604621  0.6689554   -1.88              0.06097 .  
## morality"Security"       -0.9960367  0.3083774   -3.23              0.00145 ** 
## morality"Self-direction" -0.7694735  0.3261320   -2.36              0.01926 *  
## morality"Stimulation"    -0.3282620  0.4430364   -0.74              0.45959    
## morality"Tradition"      -0.1687087  0.4346423   -0.39              0.69831    
## morality"Universalism"   -0.6001475  0.3399735   -1.77              0.07903 .  
## check_1                  -0.2605296  0.0602429   -4.32             0.000024 ***
## check_3                  -0.2850774  0.0768033   -3.71              0.00027 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1 on 202 degrees of freedom
## Multiple R-squared:  0.409,  Adjusted R-squared:  0.333 
## F-statistic: 5.38 on 26 and 202 DF,  p-value: 0.00000000000109
## 
## 
## $Block
## 
## Call:
## lm(formula = formula_list[[variable]], data = data)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -0.8987 -0.0595  0.0864  0.2198  0.8648 
## 
## Coefficients:
##                          Estimate Std. Error t value   Pr(>|t|)    
## (Intercept)              -0.04336    0.19235   -0.23      0.822    
## cond_label2.RelD-In       0.18230    0.08541    2.13      0.034 *  
## cond_label3.RelD-Out      0.06322    0.09033    0.70      0.485    
## cond_label4.LowD-In       0.08968    0.08356    1.07      0.284    
## cond_label5.LowD-Out      0.20589    0.08467    2.43      0.016 *  
## gender                   -0.02045    0.04823   -0.42      0.672    
## Age                      -0.00194    0.00220   -0.88      0.380    
## Race1,2                   0.26876    0.22821    1.18      0.240    
## Race1,2,5                 0.10064    0.38957    0.26      0.796    
## Race1,3                   0.13302    0.40071    0.33      0.740    
## Race1,6                   0.09939    0.27545    0.36      0.719    
## Race2                    -0.04716    0.08026   -0.59      0.557    
## Race2,7                   0.36062    0.38680    0.93      0.352    
## Race3                    -0.22593    0.09653   -2.34      0.020 *  
## Race5                     0.20445    0.39325    0.52      0.604    
## Race6                     0.08039    0.38827    0.21      0.836    
## Race7                     0.04365    0.19588    0.22      0.824    
## morality"Benevolence"    -0.06220    0.13308   -0.47      0.641    
## morality"Hedonism"       -0.19423    0.24741   -0.79      0.433    
## morality"Power"          -0.21959    0.24385   -0.90      0.369    
## morality"Security"       -0.07987    0.11241   -0.71      0.478    
## morality"Self-direction" -0.18657    0.11888   -1.57      0.118    
## morality"Stimulation"    -0.25610    0.16150   -1.59      0.114    
## morality"Tradition"       0.04073    0.15844    0.26      0.797    
## morality"Universalism"   -0.17853    0.12393   -1.44      0.151    
## check_1                   0.01373    0.02196    0.63      0.533    
## check_3                   0.14302    0.02800    5.11 0.00000075 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.38 on 202 degrees of freedom
## Multiple R-squared:  0.261,  Adjusted R-squared:  0.166 
## F-statistic: 2.75 on 26 and 202 DF,  p-value: 0.0000389
## 
## 
## $Admin
## 
## Call:
## lm(formula = formula_list[[variable]], data = data)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -2.1358 -0.4002  0.0116  0.5529  2.1407 
## 
## Coefficients:
##                          Estimate Std. Error t value      Pr(>|t|)    
## (Intercept)               2.13831    0.40980    5.22 0.00000044723 ***
## cond_label2.RelD-In       0.12798    0.18197    0.70        0.4827    
## cond_label3.RelD-Out      0.09973    0.19244    0.52        0.6049    
## cond_label4.LowD-In      -0.16087    0.17802   -0.90        0.3673    
## cond_label5.LowD-Out      0.06255    0.18038    0.35        0.7291    
## gender                   -0.14385    0.10276   -1.40        0.1631    
## Age                       0.00488    0.00470    1.04        0.2997    
## Race1,2                   1.00065    0.48621    2.06        0.0409 *  
## Race1,2,5                -0.33932    0.82998   -0.41        0.6831    
## Race1,3                   1.25231    0.85371    1.47        0.1440    
## Race1,6                   0.11751    0.58686    0.20        0.8415    
## Race2                     0.13415    0.17099    0.78        0.4336    
## Race2,7                   0.21510    0.82408    0.26        0.7943    
## Race3                    -0.22036    0.20566   -1.07        0.2852    
## Race5                    -0.64033    0.83783   -0.76        0.4456    
## Race6                     0.74042    0.82722    0.90        0.3718    
## Race7                     0.26830    0.41732    0.64        0.5210    
## morality"Benevolence"     0.05737    0.28354    0.20        0.8398    
## morality"Hedonism"        0.02367    0.52710    0.04        0.9642    
## morality"Power"          -0.85507    0.51952   -1.65        0.1013    
## morality"Security"       -0.05221    0.23949   -0.22        0.8276    
## morality"Self-direction" -0.20873    0.25328   -0.82        0.4108    
## morality"Stimulation"    -0.07618    0.34407   -0.22        0.8250    
## morality"Tradition"      -0.30831    0.33755   -0.91        0.3621    
## morality"Universalism"   -0.29142    0.26403   -1.10        0.2710    
## check_1                   0.13059    0.04679    2.79        0.0058 ** 
## check_3                   0.39668    0.05965    6.65 0.00000000027 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.81 on 202 degrees of freedom
## Multiple R-squared:  0.444,  Adjusted R-squared:  0.373 
## F-statistic: 6.22 on 26 and 202 DF,  p-value: 0.00000000000000562
## 
## 
## $`Admin-Block`
## 
## Call:
## lm(formula = formula_list[[variable]], data = data)
## 
## Residuals:
##    Min     1Q Median     3Q    Max 
## -4.404 -0.907  0.190  1.036  2.788 
## 
## Coefficients:
##                          Estimate Std. Error t value Pr(>|t|)   
## (Intercept)               1.40594    0.77198    1.82   0.0701 . 
## cond_label2.RelD-In       0.37451    0.34279    1.09   0.2759   
## cond_label3.RelD-Out      0.42471    0.36252    1.17   0.2428   
## cond_label4.LowD-In      -0.13377    0.33536   -0.40   0.6904   
## cond_label5.LowD-Out      0.54033    0.33980    1.59   0.1134   
## gender                   -0.25781    0.19358   -1.33   0.1844   
## Age                       0.00551    0.00885    0.62   0.5338   
## Race1,2                   1.88047    0.91591    2.05   0.0414 * 
## Race1,2,5                 2.12660    1.56351    1.36   0.1753   
## Race1,3                   2.11988    1.60821    1.32   0.1889   
## Race1,6                   0.57482    1.10552    0.52   0.6037   
## Race2                     0.35451    0.32211    1.10   0.2724   
## Race2,7                   0.19484    1.55239    0.13   0.9002   
## Race3                    -0.32699    0.38742   -0.84   0.3997   
## Race5                    -0.68801    1.57830   -0.44   0.6634   
## Race6                     1.50022    1.55831    0.96   0.3368   
## Race7                     0.57563    0.78615    0.73   0.4649   
## morality"Benevolence"     0.01846    0.53412    0.03   0.9725   
## morality"Hedonism"        0.35102    0.99295    0.35   0.7241   
## morality"Power"          -1.18941    0.97866   -1.22   0.2257   
## morality"Security"        0.05704    0.45115    0.13   0.8995   
## morality"Self-direction" -0.67572    0.47712   -1.42   0.1582   
## morality"Stimulation"    -0.32803    0.64815   -0.51   0.6133   
## morality"Tradition"      -1.06486    0.63587   -1.67   0.0956 . 
## morality"Universalism"   -0.62616    0.49737   -1.26   0.2095   
## check_1                   0.28412    0.08813    3.22   0.0015 **
## check_3                   0.33904    0.11236    3.02   0.0029 **
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.5 on 202 degrees of freedom
## Multiple R-squared:  0.324,  Adjusted R-squared:  0.237 
## F-statistic: 3.73 on 26 and 202 DF,  p-value: 0.0000000572
## 
## 
## $`Admin-Kick`
## 
## Call:
## lm(formula = formula_list[[variable]], data = data)
## 
## Residuals:
##    Min     1Q Median     3Q    Max 
## -4.138 -1.034  0.209  1.051  2.963 
## 
## Coefficients:
##                          Estimate Std. Error t value  Pr(>|t|)    
## (Intercept)               1.55641    0.77921    2.00     0.047 *  
## cond_label2.RelD-In       0.06620    0.34600    0.19     0.848    
## cond_label3.RelD-Out      0.18306    0.36591    0.50     0.617    
## cond_label4.LowD-In      -0.30996    0.33849   -0.92     0.361    
## cond_label5.LowD-Out      0.21296    0.34298    0.62     0.535    
## gender                   -0.07938    0.19539   -0.41     0.685    
## Age                      -0.01289    0.00893   -1.44     0.150    
## Race1,2                   0.61726    0.92448    0.67     0.505    
## Race1,2,5                -1.73233    1.57814   -1.10     0.274    
## Race1,3                   0.56377    1.62326    0.35     0.729    
## Race1,6                   1.02920    1.11586    0.92     0.357    
## Race2                     0.24176    0.32513    0.74     0.458    
## Race2,7                   1.15145    1.56692    0.73     0.463    
## Race3                    -0.86677    0.39105   -2.22     0.028 *  
## Race5                    -1.03772    1.59307   -0.65     0.516    
## Race6                    -0.92366    1.57289   -0.59     0.558    
## Race7                    -0.36839    0.79351   -0.46     0.643    
## morality"Benevolence"    -0.28439    0.53912   -0.53     0.598    
## morality"Hedonism"       -0.42155    1.00224   -0.42     0.674    
## morality"Power"          -1.50570    0.98782   -1.52     0.129    
## morality"Security"       -0.26734    0.45537   -0.59     0.558    
## morality"Self-direction" -0.69777    0.48159   -1.45     0.149    
## morality"Stimulation"    -0.73668    0.65422   -1.13     0.261    
## morality"Tradition"      -0.56401    0.64182   -0.88     0.381    
## morality"Universalism"   -0.59678    0.50203   -1.19     0.236    
## check_1                   0.15440    0.08896    1.74     0.084 .  
## check_3                   0.55689    0.11341    4.91 0.0000019 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.5 on 202 degrees of freedom
## Multiple R-squared:  0.295,  Adjusted R-squared:  0.205 
## F-statistic: 3.26 on 26 and 202 DF,  p-value: 0.00000131
## 
## 
## $`Admin-Report`
## 
## Call:
## lm(formula = formula_list[[variable]], data = data)
## 
## Residuals:
##    Min     1Q Median     3Q    Max 
## -3.514 -0.967  0.000  1.031  4.979 
## 
## Coefficients:
##                          Estimate Std. Error t value Pr(>|t|)    
## (Intercept)               1.58913    0.78926    2.01  0.04539 *  
## cond_label2.RelD-In      -0.70921    0.35046   -2.02  0.04432 *  
## cond_label3.RelD-Out     -0.14493    0.37063   -0.39  0.69619    
## cond_label4.LowD-In      -0.31727    0.34286   -0.93  0.35589    
## cond_label5.LowD-Out      0.00276    0.34740    0.01  0.99368    
## gender                   -0.48470    0.19791   -2.45  0.01517 *  
## Age                       0.00615    0.00905    0.68  0.49758    
## Race1,2                   2.30342    0.93641    2.46  0.01474 *  
## Race1,2,5                -2.65546    1.59850   -1.66  0.09822 .  
## Race1,3                   1.38815    1.64419    0.84  0.39951    
## Race1,6                  -0.12708    1.13025   -0.11  0.91059    
## Race2                     1.04755    0.32932    3.18  0.00170 ** 
## Race2,7                  -0.60690    1.58713   -0.38  0.70257    
## Race3                     0.12821    0.39609    0.32  0.74651    
## Race5                     0.91794    1.61361    0.57  0.57008    
## Race6                     0.95832    1.59318    0.60  0.54817    
## Race7                    -0.46044    0.80374   -0.57  0.56737    
## morality"Benevolence"    -0.43364    0.54607   -0.79  0.42806    
## morality"Hedonism"        1.37736    1.01516    1.36  0.17636    
## morality"Power"          -1.53011    1.00056   -1.53  0.12777    
## morality"Security"       -0.32674    0.46124   -0.71  0.47952    
## morality"Self-direction" -0.65292    0.48780   -1.34  0.18224    
## morality"Stimulation"    -0.67254    0.66265   -1.01  0.31136    
## morality"Tradition"      -0.29887    0.65010   -0.46  0.64621    
## morality"Universalism"   -1.00487    0.50850   -1.98  0.04950 *  
## check_1                   0.35302    0.09011    3.92  0.00012 ***
## check_3                   0.20817    0.11488    1.81  0.07145 .  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.6 on 202 degrees of freedom
## Multiple R-squared:  0.324,  Adjusted R-squared:  0.237 
## F-statistic: 3.72 on 26 and 202 DF,  p-value: 0.0000000589
## 
## 
## $`Admin-Pin`
## 
## Call:
## lm(formula = formula_list[[variable]], data = data)
## 
## Residuals:
##    Min     1Q Median     3Q    Max 
## -5.147 -0.337  0.241  0.717  2.443 
## 
## Coefficients:
##                          Estimate Std. Error t value Pr(>|t|)    
## (Intercept)               2.88331    0.64351    4.48 0.000012 ***
## cond_label2.RelD-In       0.48753    0.28574    1.71    0.090 .  
## cond_label3.RelD-Out     -0.29532    0.30219   -0.98    0.330    
## cond_label4.LowD-In      -0.10834    0.27955   -0.39    0.699    
## cond_label5.LowD-Out     -0.36936    0.28325   -1.30    0.194    
## gender                    0.03965    0.16136    0.25    0.806    
## Age                       0.01472    0.00738    2.00    0.047 *  
## Race1,2                   0.55039    0.76349    0.72    0.472    
## Race1,2,5                 0.49889    1.30332    0.38    0.702    
## Race1,3                   1.90356    1.34057    1.42    0.157    
## Race1,6                  -0.31432    0.92154   -0.34    0.733    
## Race2                    -0.76200    0.26851   -2.84    0.005 ** 
## Race2,7                   0.63923    1.29404    0.49    0.622    
## Race3                     0.31827    0.32295    0.99    0.326    
## Race5                    -0.58185    1.31564   -0.44    0.659    
## Race6                     0.76840    1.29898    0.59    0.555    
## Race7                     0.62923    0.65532    0.96    0.338    
## morality"Benevolence"     0.74208    0.44524    1.67    0.097 .  
## morality"Hedonism"       -1.06755    0.82770   -1.29    0.199    
## morality"Power"           0.05964    0.81580    0.07    0.942    
## morality"Security"        0.28912    0.37607    0.77    0.443    
## morality"Self-direction"  0.73549    0.39772    1.85    0.066 .  
## morality"Stimulation"     0.94629    0.54029    1.75    0.081 .  
## morality"Tradition"       0.07109    0.53005    0.13    0.893    
## morality"Universalism"    0.71878    0.41460    1.73    0.085 .  
## check_1                  -0.06906    0.07347   -0.94    0.348    
## check_3                   0.41333    0.09366    4.41 0.000017 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.3 on 202 degrees of freedom
## Multiple R-squared:  0.285,  Adjusted R-squared:  0.193 
## F-statistic: 3.09 on 26 and 202 DF,  p-value: 0.00000394
## 
## 
## $`Admin-Upvote`
## 
## Call:
## lm(formula = formula_list[[variable]], data = data)
## 
## Residuals:
##    Min     1Q Median     3Q    Max 
## -4.522 -0.377  0.180  0.548  1.991 
## 
## Coefficients:
##                          Estimate Std. Error t value   Pr(>|t|)    
## (Intercept)               2.69973    0.55243    4.89 0.00000208 ***
## cond_label2.RelD-In       0.53330    0.24530    2.17     0.0309 *  
## cond_label3.RelD-Out      0.17696    0.25942    0.68     0.4959    
## cond_label4.LowD-In      -0.00760    0.23998   -0.03     0.9748    
## cond_label5.LowD-Out     -0.13118    0.24316   -0.54     0.5902    
## gender                    0.07852    0.13852    0.57     0.5714    
## Age                       0.01763    0.00633    2.78     0.0059 ** 
## Race1,2                   0.48807    0.65543    0.74     0.4573    
## Race1,2,5                -0.63327    1.11885   -0.57     0.5720    
## Race1,3                   1.49522    1.15084    1.30     0.1953    
## Race1,6                  -0.07227    0.79111   -0.09     0.9273    
## Race2                    -0.57951    0.23050   -2.51     0.0127 *  
## Race2,7                   0.53084    1.11090    0.48     0.6333    
## Race3                    -0.14807    0.27724   -0.53     0.5939    
## Race5                    -0.94166    1.12944   -0.83     0.4054    
## Race6                     0.65842    1.11513    0.59     0.5556    
## Race7                     0.54961    0.56257    0.98     0.3298    
## morality"Benevolence"     0.60545    0.38222    1.58     0.1147    
## morality"Hedonism"        0.73683    0.71056    1.04     0.3010    
## morality"Power"           0.83696    0.70034    1.20     0.2335    
## morality"Security"        0.33202    0.32284    1.03     0.3050    
## morality"Self-direction"  0.67215    0.34143    1.97     0.0504 .  
## morality"Stimulation"     0.78183    0.46382    1.69     0.0934 .  
## morality"Tradition"       0.37173    0.45503    0.82     0.4149    
## morality"Universalism"    0.64978    0.35592    1.83     0.0694 .  
## check_1                  -0.06802    0.06307   -1.08     0.2821    
## check_3                   0.40977    0.08041    5.10 0.00000079 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.1 on 202 degrees of freedom
## Multiple R-squared:  0.291,  Adjusted R-squared:  0.199 
## F-statistic: 3.18 on 26 and 202 DF,  p-value: 0.00000216
## 
## 
## $`Admin-Monitor`
## 
## Call:
## lm(formula = formula_list[[variable]], data = data)
## 
## Residuals:
##    Min     1Q Median     3Q    Max 
## -4.072 -0.641  0.202  0.918  3.375 
## 
## Coefficients:
##                          Estimate Std. Error t value  Pr(>|t|)    
## (Intercept)               2.69537    0.63180    4.27 0.0000305 ***
## cond_label2.RelD-In       0.01555    0.28054    0.06     0.956    
## cond_label3.RelD-Out      0.25389    0.29669    0.86     0.393    
## cond_label4.LowD-In      -0.08829    0.27446   -0.32     0.748    
## cond_label5.LowD-Out      0.11982    0.27809    0.43     0.667    
## gender                   -0.15940    0.15843   -1.01     0.316    
## Age                      -0.00182    0.00724   -0.25     0.802    
## Race1,2                   0.16429    0.74959    0.22     0.827    
## Race1,2,5                 0.35964    1.27959    0.28     0.779    
## Race1,3                   0.04326    1.31617    0.03     0.974    
## Race1,6                  -0.38531    0.90476   -0.43     0.671    
## Race2                     0.50260    0.26362    1.91     0.058 .  
## Race2,7                  -0.61885    1.27048   -0.49     0.627    
## Race3                    -0.42681    0.31707   -1.35     0.180    
## Race5                    -1.51070    1.29169   -1.17     0.244    
## Race6                     1.48081    1.27533    1.16     0.247    
## Race7                     0.68414    0.64339    1.06     0.289    
## morality"Benevolence"    -0.30371    0.43713   -0.69     0.488    
## morality"Hedonism"       -0.83407    0.81263   -1.03     0.306    
## morality"Power"          -1.80180    0.80094   -2.25     0.026 *  
## morality"Security"       -0.39738    0.36922   -1.08     0.283    
## morality"Self-direction" -0.63362    0.39048   -1.62     0.106    
## morality"Stimulation"    -0.44797    0.53045   -0.84     0.399    
## morality"Tradition"      -0.36491    0.52040   -0.70     0.484    
## morality"Universalism"   -0.88924    0.40705   -2.18     0.030 *  
## check_1                   0.12905    0.07213    1.79     0.075 .  
## check_3                   0.45290    0.09196    4.93 0.0000018 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.2 on 202 degrees of freedom
## Multiple R-squared:  0.32,   Adjusted R-squared:  0.232 
## F-statistic: 3.65 on 26 and 202 DF,  p-value: 0.0000000931
## 
## 
## $`Admin-EncourageOthersReport`
## 
## Call:
## lm(formula = formula_list[[variable]], data = data)
## 
## Residuals:
##    Min     1Q Median     3Q    Max 
## -3.934 -0.928  0.000  1.217  3.805 
## 
## Coefficients:
##                            Estimate Std. Error t value Pr(>|t|)    
## (Intercept)               1.4353921  0.8486082    1.69  0.09229 .  
## cond_label2.RelD-In      -0.1245346  0.3768148   -0.33  0.74137    
## cond_label3.RelD-Out      0.0384090  0.3984998    0.10  0.92331    
## cond_label4.LowD-In       0.0154098  0.3686418    0.04  0.96670    
## cond_label5.LowD-Out      0.7921512  0.3735259    2.12  0.03516 *  
## gender                    0.0119555  0.2127917    0.06  0.95525    
## Age                       0.0000414  0.0097262    0.00  0.99661    
## Race1,2                   1.0304555  1.0068226    1.02  0.30731    
## Race1,2,5                 1.5168194  1.7187013    0.88  0.37853    
## Race1,3                   1.2475743  1.7678346    0.71  0.48118    
## Race1,6                   0.2979684  1.2152444    0.25  0.80656    
## Race2                     0.5995858  0.3540826    1.69  0.09193 .  
## Race2,7                   1.3541576  1.7064748    0.79  0.42839    
## Race3                    -0.4278518  0.4258758   -1.00  0.31627    
## Race5                     1.0649399  1.7349547    0.61  0.54003    
## Race6                    -0.4942672  1.7129810   -0.29  0.77323    
## Race7                    -0.3464565  0.8641817   -0.40  0.68891    
## morality"Benevolence"    -0.3856497  0.5871388   -0.66  0.51204    
## morality"Hedonism"       -0.0388809  1.0915016   -0.04  0.97162    
## morality"Power"          -2.2302341  1.0758028   -2.07  0.03943 *  
## morality"Security"       -0.5180094  0.4959274   -1.04  0.29749    
## morality"Self-direction" -1.1709197  0.5244800   -2.23  0.02668 *  
## morality"Stimulation"    -0.8876682  0.7124837   -1.25  0.21425    
## morality"Tradition"      -0.9866842  0.6989844   -1.41  0.15961    
## morality"Universalism"   -1.0886739  0.5467396   -1.99  0.04781 *  
## check_1                   0.1417968  0.0968815    1.46  0.14485    
## check_3                   0.4241503  0.1235138    3.43  0.00072 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.7 on 202 degrees of freedom
## Multiple R-squared:  0.242,  Adjusted R-squared:  0.145 
## F-statistic: 2.48 on 26 and 202 DF,  p-value: 0.000212

Moderations

Just significant moderations

Broad

For these analyses, I grouped conditions as just “Low”, “Relative”, and “High” diversity.

Main effects and scale information

Post hoc tests

## $Tightness
##   Tukey multiple comparisons of means
##     95% family-wise confidence level
## 
## Fit: aov(formula = y ~ cond_broad, data = exp1_5cond2clean)
## 
## $cond_broad
##                     diff    lwr  upr p adj
## 2. Relative-1. High 0.92  0.480 1.36  0.00
## 3. Low-1. High      1.18  0.753 1.61  0.00
## 3. Low-2. Relative  0.26 -0.067 0.59  0.15
## 
## 
## $Status
##   Tukey multiple comparisons of means
##     95% family-wise confidence level
## 
## Fit: aov(formula = y ~ cond_broad, data = exp1_5cond2clean)
## 
## $cond_broad
##                       diff   lwr  upr p adj
## 2. Relative-1. High -0.041 -0.72 0.64  0.99
## 3. Low-1. High       0.088 -0.57 0.74  0.95
## 3. Low-2. Relative   0.129 -0.37 0.63  0.82
## 
## 
## $Domin.
##   Tukey multiple comparisons of means
##     95% family-wise confidence level
## 
## Fit: aov(formula = y ~ cond_broad, data = exp1_5cond2clean)
## 
## $cond_broad
##                       diff   lwr  upr p adj
## 2. Relative-1. High -0.032 -0.66 0.60  0.99
## 3. Low-1. High       0.031 -0.58 0.64  0.99
## 3. Low-2. Relative   0.063 -0.40 0.53  0.94
## 
## 
## $Monitor
##   Tukey multiple comparisons of means
##     95% family-wise confidence level
## 
## Fit: aov(formula = y ~ cond_broad, data = exp1_5cond2clean)
## 
## $cond_broad
##                      diff   lwr  upr p adj
## 2. Relative-1. High  0.72  0.02 1.43  0.04
## 3. Low-1. High       0.53 -0.15 1.22  0.16
## 3. Low-2. Relative  -0.19 -0.71 0.33  0.66
## 
## 
## $SOP
##   Tukey multiple comparisons of means
##     95% family-wise confidence level
## 
## Fit: aov(formula = y ~ cond_broad, data = exp1_5cond2clean)
## 
## $cond_broad
##                       diff   lwr  upr p adj
## 2. Relative-1. High  0.102 -0.47 0.67  0.91
## 3. Low-1. High      -0.079 -0.63 0.48  0.94
## 3. Low-2. Relative  -0.181 -0.60 0.24  0.57
## 
## 
## $Affil.
##   Tukey multiple comparisons of means
##     95% family-wise confidence level
## 
## Fit: aov(formula = y ~ cond_broad, data = exp1_5cond2clean)
## 
## $cond_broad
##                       diff   lwr  upr p adj
## 2. Relative-1. High  0.112 -0.48 0.70  0.90
## 3. Low-1. High       0.084 -0.49 0.66  0.94
## 3. Low-2. Relative  -0.028 -0.46 0.41  0.99
## 
## 
## $Block
##   Tukey multiple comparisons of means
##     95% family-wise confidence level
## 
## Fit: aov(formula = y ~ cond_broad, data = exp1_5cond2clean)
## 
## $cond_broad
##                       diff    lwr  upr p adj
## 2. Relative-1. High  0.177 -0.014 0.37  0.08
## 3. Low-1. High       0.144 -0.042 0.33  0.16
## 3. Low-2. Relative  -0.033 -0.174 0.11  0.84
## 
## 
## $Admin
##   Tukey multiple comparisons of means
##     95% family-wise confidence level
## 
## Fit: aov(formula = y ~ cond_broad, data = exp1_5cond2clean)
## 
## $cond_broad
##                       diff   lwr   upr p adj
## 2. Relative-1. High  0.307 -0.16 0.776  0.27
## 3. Low-1. High      -0.004 -0.46 0.451  1.00
## 3. Low-2. Relative  -0.311 -0.66 0.035  0.09
## 
## 
## $`Admin-Block`
##   Tukey multiple comparisons of means
##     95% family-wise confidence level
## 
## Fit: aov(formula = y ~ cond_broad, data = exp1_5cond2clean)
## 
## $cond_broad
##                      diff   lwr  upr p adj
## 2. Relative-1. High  0.61 -0.19 1.41  0.17
## 3. Low-1. High       0.19 -0.59 0.96  0.84
## 3. Low-2. Relative  -0.42 -1.02 0.17  0.21
## 
## 
## $`Admin-Kick`
##   Tukey multiple comparisons of means
##     95% family-wise confidence level
## 
## Fit: aov(formula = y ~ cond_broad, data = exp1_5cond2clean)
## 
## $cond_broad
##                      diff   lwr  upr p adj
## 2. Relative-1. High  0.30 -0.49 1.10  0.64
## 3. Low-1. High      -0.15 -0.92 0.62  0.89
## 3. Low-2. Relative  -0.45 -1.04 0.13  0.16
## 
## 
## $`Admin-Report`
##   Tukey multiple comparisons of means
##     95% family-wise confidence level
## 
## Fit: aov(formula = y ~ cond_broad, data = exp1_5cond2clean)
## 
## $cond_broad
##                       diff   lwr  upr p adj
## 2. Relative-1. High -0.133 -0.96 0.69  0.92
## 3. Low-1. High      -0.152 -0.95 0.65  0.90
## 3. Low-2. Relative  -0.019 -0.63 0.59  1.00
## 
## 
## $`Admin-Pin`
##   Tukey multiple comparisons of means
##     95% family-wise confidence level
## 
## Fit: aov(formula = y ~ cond_broad, data = exp1_5cond2clean)
## 
## $cond_broad
##                       diff   lwr  upr p adj
## 2. Relative-1. High  0.240 -0.41 0.89  0.66
## 3. Low-1. High      -0.046 -0.68 0.59  0.98
## 3. Low-2. Relative  -0.286 -0.77 0.20  0.34
## 
## 
## $`Admin-Upvote`
##   Tukey multiple comparisons of means
##     95% family-wise confidence level
## 
## Fit: aov(formula = y ~ cond_broad, data = exp1_5cond2clean)
## 
## $cond_broad
##                       diff   lwr   upr p adj
## 2. Relative-1. High  0.535 -0.02  1.09  0.06
## 3. Low-1. High       0.085 -0.45  0.62  0.93
## 3. Low-2. Relative  -0.450 -0.86 -0.04  0.03
## 
## 
## $`Admin-Monitor`
##   Tukey multiple comparisons of means
##     95% family-wise confidence level
## 
## Fit: aov(formula = y ~ cond_broad, data = exp1_5cond2clean)
## 
## $cond_broad
##                       diff   lwr  upr p adj
## 2. Relative-1. High  0.284 -0.37 0.94  0.57
## 3. Low-1. High       0.052 -0.59 0.69  0.98
## 3. Low-2. Relative  -0.232 -0.72 0.25  0.50
## 
## 
## $`Admin-EncourageOthersReport`
##   Tukey multiple comparisons of means
##     95% family-wise confidence level
## 
## Fit: aov(formula = y ~ cond_broad, data = exp1_5cond2clean)
## 
## $cond_broad
##                     diff   lwr  upr p adj
## 2. Relative-1. High 0.17 -0.66 1.01  0.88
## 3. Low-1. High      0.37 -0.44 1.19  0.53
## 3. Low-2. Relative  0.20 -0.42 0.82  0.73

Logistic regression

Block
## 
## Call:
## glm(formula = block ~ cond_broad, family = "binomial", data = exp1_5cond2clean)
## 
## Coefficients:
##                       Estimate Std. Error z value Pr(>|z|)  
## (Intercept)              0.613      0.344    1.78    0.075 .
## cond_broad2. Relative    0.942      0.446    2.11    0.035 *
## cond_broad3. Low         0.727      0.419    1.73    0.083 .
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 240.36  on 228  degrees of freedom
## Residual deviance: 235.84  on 226  degrees of freedom
## AIC: 241.8
## 
## Number of Fisher Scoring iterations: 4
##           (Intercept) cond_broad2. Relative      cond_broad3. Low 
##                   1.8                   2.6                   2.1

Graphs

Full scale measures

Single Item measures

Controls

Full list

## $Tightness
## 
## Call:
## lm(formula = formula_list[[variable]], data = data)
## 
## Residuals:
##    Min     1Q Median     3Q    Max 
## -3.324 -0.562 -0.003  0.506  3.166 
## 
## Coefficients:
##                          Estimate Std. Error t value             Pr(>|t|)    
## (Intercept)               4.32455    0.38448   11.25 < 0.0000000000000002 ***
## cond_broad2. Relative     0.94118    0.18988    4.96        0.00000149429 ***
## cond_broad3. Low          1.23739    0.18760    6.60        0.00000000035 ***
## gender                   -0.13974    0.11795   -1.18                0.238    
## Age                      -0.00743    0.00523   -1.42                0.157    
## Race1,2                  -0.28888    0.56936   -0.51                0.612    
## Race1,2,5                 1.18867    0.95876    1.24                0.216    
## Race1,3                   0.56241    0.99318    0.57                0.572    
## Race1,6                   0.11504    0.67949    0.17                0.866    
## Race2                     0.11934    0.19430    0.61                0.540    
## Race2,7                  -0.44998    0.95967   -0.47                0.640    
## Race3                     0.15704    0.24045    0.65                0.514    
## Race5                     0.56974    0.96630    0.59                0.556    
## Race6                     0.97232    0.95832    1.01                0.311    
## Race7                     0.41210    0.48498    0.85                0.396    
## morality"Benevolence"    -0.61036    0.33074   -1.85                0.066 .  
## morality"Hedonism"       -0.60111    0.61513   -0.98                0.330    
## morality"Power"           0.94829    0.60664    1.56                0.120    
## morality"Security"       -0.21693    0.28003   -0.77                0.439    
## morality"Self-direction" -0.28266    0.29557   -0.96                0.340    
## morality"Stimulation"    -0.58076    0.40209   -1.44                0.150    
## morality"Tradition"      -0.05535    0.38571   -0.14                0.886    
## morality"Universalism"   -0.38354    0.30839   -1.24                0.215    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.94 on 206 degrees of freedom
## Multiple R-squared:  0.248,  Adjusted R-squared:  0.167 
## F-statistic: 3.08 on 22 and 206 DF,  p-value: 0.0000138
## 
## 
## $Status
## 
## Call:
## lm(formula = formula_list[[variable]], data = data)
## 
## Residuals:
##    Min     1Q Median     3Q    Max 
## -2.426 -1.161 -0.230  0.749  4.760 
## 
## Coefficients:
##                          Estimate Std. Error t value     Pr(>|t|)    
## (Intercept)               3.47338    0.56812    6.11 0.0000000048 ***
## cond_broad2. Relative    -0.02726    0.28057   -0.10       0.9227    
## cond_broad3. Low          0.07333    0.27720    0.26       0.7916    
## gender                   -0.10279    0.17429   -0.59       0.5560    
## Age                      -0.01317    0.00772   -1.71       0.0897 .  
## Race1,2                  -1.11192    0.84130   -1.32       0.1877    
## Race1,2,5                 3.60635    1.41669    2.55       0.0116 *  
## Race1,3                  -0.97713    1.46755   -0.67       0.5063    
## Race1,6                  -0.83806    1.00403   -0.83       0.4049    
## Race2                     0.85520    0.28710    2.98       0.0032 ** 
## Race2,7                   0.19305    1.41802    0.14       0.8918    
## Race3                     0.00458    0.35529    0.01       0.9897    
## Race5                     1.85195    1.42783    1.30       0.1961    
## Race6                    -1.36744    1.41603   -0.97       0.3353    
## Race7                     0.33024    0.71661    0.46       0.6454    
## morality"Benevolence"    -0.45274    0.48870   -0.93       0.3553    
## morality"Hedonism"       -1.28730    0.90893   -1.42       0.1582    
## morality"Power"          -0.37415    0.89638   -0.42       0.6768    
## morality"Security"       -0.35224    0.41377   -0.85       0.3956    
## morality"Self-direction" -0.35210    0.43673   -0.81       0.4211    
## morality"Stimulation"    -0.24472    0.59414   -0.41       0.6809    
## morality"Tradition"       1.00286    0.56994    1.76       0.0800 .  
## morality"Universalism"   -0.44212    0.45569   -0.97       0.3331    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.4 on 206 degrees of freedom
## Multiple R-squared:  0.167,  Adjusted R-squared:  0.0782 
## F-statistic: 1.88 on 22 and 206 DF,  p-value: 0.0125
## 
## 
## $Domin.
## 
## Call:
## lm(formula = formula_list[[variable]], data = data)
## 
## Residuals:
##    Min     1Q Median     3Q    Max 
## -2.641 -0.959  0.000  0.878  3.462 
## 
## Coefficients:
##                          Estimate Std. Error t value       Pr(>|t|)    
## (Intercept)               3.73001    0.54309    6.87 0.000000000075 ***
## cond_broad2. Relative    -0.04876    0.26821   -0.18          0.856    
## cond_broad3. Low          0.13909    0.26499    0.52          0.600    
## gender                    0.04996    0.16661    0.30          0.765    
## Age                      -0.00843    0.00738   -1.14          0.255    
## Race1,2                  -0.87428    0.80423   -1.09          0.278    
## Race1,2,5                -2.16693    1.35427   -1.60          0.111    
## Race1,3                   1.38752    1.40289    0.99          0.324    
## Race1,6                   1.13271    0.95979    1.18          0.239    
## Race2                     0.01252    0.27445    0.05          0.964    
## Race2,7                   0.24736    1.35555    0.18          0.855    
## Race3                    -0.03050    0.33964   -0.09          0.929    
## Race5                    -0.83082    1.36492   -0.61          0.543    
## Race6                    -0.72734    1.35365   -0.54          0.592    
## Race7                    -1.08799    0.68504   -1.59          0.114    
## morality"Benevolence"    -0.30184    0.46717   -0.65          0.519    
## morality"Hedonism"        0.79713    0.86888    0.92          0.360    
## morality"Power"           1.26884    0.85689    1.48          0.140    
## morality"Security"       -0.30512    0.39554   -0.77          0.441    
## morality"Self-direction" -0.77006    0.41749   -1.84          0.067 .  
## morality"Stimulation"    -0.69288    0.56797   -1.22          0.224    
## morality"Tradition"      -0.61707    0.54482   -1.13          0.259    
## morality"Universalism"   -0.54615    0.43561   -1.25          0.211    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.3 on 206 degrees of freedom
## Multiple R-squared:  0.114,  Adjusted R-squared:  0.0194 
## F-statistic:  1.2 on 22 and 206 DF,  p-value: 0.247
## 
## 
## $Monitor
## 
## Call:
## lm(formula = formula_list[[variable]], data = data)
## 
## Residuals:
##    Min     1Q Median     3Q    Max 
## -3.351 -1.089  0.072  0.912  3.102 
## 
## Coefficients:
##                          Estimate Std. Error t value       Pr(>|t|)    
## (Intercept)               4.39519    0.62439    7.04 0.000000000028 ***
## cond_broad2. Relative     0.71134    0.30836    2.31          0.022 *  
## cond_broad3. Low          0.55682    0.30465    1.83          0.069 .  
## gender                   -0.05018    0.19155   -0.26          0.794    
## Age                      -0.00427    0.00849   -0.50          0.616    
## Race1,2                  -0.56725    0.92462   -0.61          0.540    
## Race1,2,5                -1.12680    1.55701   -0.72          0.470    
## Race1,3                   0.57920    1.61290    0.36          0.720    
## Race1,6                   0.88588    1.10347    0.80          0.423    
## Race2                     0.48169    0.31554    1.53          0.128    
## Race2,7                  -1.17907    1.55847   -0.76          0.450    
## Race3                    -0.06746    0.39048   -0.17          0.863    
## Race5                    -0.43463    1.56925   -0.28          0.782    
## Race6                     1.83373    1.55628    1.18          0.240    
## Race7                     0.78893    0.78759    1.00          0.318    
## morality"Benevolence"    -0.33517    0.53711   -0.62          0.533    
## morality"Hedonism"        0.47670    0.99895    0.48          0.634    
## morality"Power"          -0.63818    0.98516   -0.65          0.518    
## morality"Security"       -0.54878    0.45475   -1.21          0.229    
## morality"Self-direction" -0.40861    0.47999   -0.85          0.396    
## morality"Stimulation"    -1.22991    0.65299   -1.88          0.061 .  
## morality"Tradition"      -0.15332    0.62638   -0.24          0.807    
## morality"Universalism"   -0.44243    0.50082   -0.88          0.378    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.5 on 206 degrees of freedom
## Multiple R-squared:  0.0929, Adjusted R-squared:  -0.00393 
## F-statistic: 0.959 on 22 and 206 DF,  p-value: 0.517
## 
## 
## $SOP
## 
## Call:
## lm(formula = formula_list[[variable]], data = data)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -3.1138 -0.6702  0.0233  0.7485  2.9100 
## 
## Coefficients:
##                          Estimate Std. Error t value          Pr(>|t|)    
## (Intercept)               4.08575    0.50405    8.11 0.000000000000046 ***
## cond_broad2. Relative     0.09695    0.24893    0.39             0.697    
## cond_broad3. Low         -0.16300    0.24594   -0.66             0.508    
## gender                    0.29362    0.15463    1.90             0.059 .  
## Age                      -0.01060    0.00685   -1.55             0.123    
## Race1,2                  -0.85971    0.74642   -1.15             0.251    
## Race1,2,5                 2.68267    1.25693    2.13             0.034 *  
## Race1,3                   0.44206    1.30205    0.34             0.735    
## Race1,6                   0.75095    0.89080    0.84             0.400    
## Race2                    -0.23202    0.25473   -0.91             0.363    
## Race2,7                   0.84892    1.25811    0.67             0.501    
## Race3                    -0.10614    0.31522   -0.34             0.737    
## Race5                     0.39489    1.26681    0.31             0.756    
## Race6                     0.59501    1.25635    0.47             0.636    
## Race7                    -0.27972    0.63580   -0.44             0.660    
## morality"Benevolence"     0.13362    0.43359    0.31             0.758    
## morality"Hedonism"       -0.35688    0.80642   -0.44             0.659    
## morality"Power"          -0.06526    0.79530   -0.08             0.935    
## morality"Security"        0.23421    0.36711    0.64             0.524    
## morality"Self-direction"  0.18258    0.38748    0.47             0.638    
## morality"Stimulation"     0.50658    0.52714    0.96             0.338    
## morality"Tradition"       0.79410    0.50566    1.57             0.118    
## morality"Universalism"    0.00258    0.40430    0.01             0.995    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.2 on 206 degrees of freedom
## Multiple R-squared:  0.0844, Adjusted R-squared:  -0.0134 
## F-statistic: 0.863 on 22 and 206 DF,  p-value: 0.644
## 
## 
## $Affil.
## 
## Call:
## lm(formula = formula_list[[variable]], data = data)
## 
## Residuals:
##    Min     1Q Median     3Q    Max 
## -2.349 -0.970 -0.127  0.779  3.486 
## 
## Coefficients:
##                          Estimate Std. Error t value          Pr(>|t|)    
## (Intercept)                4.0871     0.4928    8.29 0.000000000000014 ***
## cond_broad2. Relative      0.0966     0.2434    0.40             0.692    
## cond_broad3. Low           0.0888     0.2404    0.37             0.712    
## gender                    -0.3744     0.1512   -2.48             0.014 *  
## Age                       -0.0128     0.0067   -1.91             0.058 .  
## Race1,2                   -0.6595     0.7297   -0.90             0.367    
## Race1,2,5                  1.4427     1.2288    1.17             0.242    
## Race1,3                   -0.1793     1.2729   -0.14             0.888    
## Race1,6                   -1.1686     0.8709   -1.34             0.181    
## Race2                      0.2815     0.2490    1.13             0.260    
## Race2,7                   -0.2398     1.2300   -0.19             0.846    
## Race3                     -0.3736     0.3082   -1.21             0.227    
## Race5                      1.8634     1.2385    1.50             0.134    
## Race6                     -0.4514     1.2283   -0.37             0.714    
## Race7                     -0.0565     0.6216   -0.09             0.928    
## morality"Benevolence"     -0.6843     0.4239   -1.61             0.108    
## morality"Hedonism"        -1.4588     0.7884   -1.85             0.066 .  
## morality"Power"           -1.1740     0.7775   -1.51             0.133    
## morality"Security"        -0.8167     0.3589   -2.28             0.024 *  
## morality"Self-direction"  -0.5293     0.3788   -1.40             0.164    
## morality"Stimulation"     -0.3636     0.5153   -0.71             0.481    
## morality"Tradition"        0.5528     0.4944    1.12             0.265    
## morality"Universalism"    -0.3858     0.3953   -0.98             0.330    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.2 on 206 degrees of freedom
## Multiple R-squared:  0.18,   Adjusted R-squared:  0.0922 
## F-statistic: 2.05 on 22 and 206 DF,  p-value: 0.00507
## 
## 
## $Block
## 
## Call:
## lm(formula = formula_list[[variable]], data = data)
## 
## Residuals:
##    Min     1Q Median     3Q    Max 
## -0.881  0.000  0.142  0.246  0.599 
## 
## Coefficients:
##                           Estimate Std. Error t value Pr(>|t|)    
## (Intercept)               0.713222   0.169631    4.20 0.000039 ***
## cond_broad2. Relative     0.184109   0.083773    2.20    0.029 *  
## cond_broad3. Low          0.158001   0.082768    1.91    0.058 .  
## gender                    0.046496   0.052040    0.89    0.373    
## Age                       0.000352   0.002306    0.15    0.879    
## Race1,2                   0.291697   0.251198    1.16    0.247    
## Race1,2,5                 0.187467   0.423002    0.44    0.658    
## Race1,3                   0.002638   0.438187    0.01    0.995    
## Race1,6                   0.266748   0.299788    0.89    0.375    
## Race2                     0.012754   0.085725    0.15    0.882    
## Race2,7                   0.149420   0.423400    0.35    0.725    
## Race3                    -0.192364   0.106084   -1.81    0.071 .  
## Race5                     0.288209   0.426328    0.68    0.500    
## Race6                     0.148364   0.422806    0.35    0.726    
## Race7                     0.190193   0.213970    0.89    0.375    
## morality"Benevolence"    -0.107854   0.145919   -0.74    0.461    
## morality"Hedonism"       -0.273759   0.271391   -1.01    0.314    
## morality"Power"          -0.235638   0.267646   -0.88    0.380    
## morality"Security"       -0.123842   0.123546   -1.00    0.317    
## morality"Self-direction" -0.221821   0.130402   -1.70    0.090 .  
## morality"Stimulation"    -0.236901   0.177402   -1.34    0.183    
## morality"Tradition"      -0.145129   0.170174   -0.85    0.395    
## morality"Universalism"   -0.246820   0.136061   -1.81    0.071 .  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.42 on 206 degrees of freedom
## Multiple R-squared:  0.0853, Adjusted R-squared:  -0.0124 
## F-statistic: 0.873 on 22 and 206 DF,  p-value: 0.63
## 
## 
## $Admin
## 
## Call:
## lm(formula = formula_list[[variable]], data = data)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -2.8799 -0.5773  0.0096  0.6545  2.1239 
## 
## Coefficients:
##                          Estimate Std. Error t value            Pr(>|t|)    
## (Intercept)               4.57371    0.40393   11.32 <0.0000000000000002 ***
## cond_broad2. Relative     0.28520    0.19948    1.43              0.1543    
## cond_broad3. Low         -0.00214    0.19709   -0.01              0.9914    
## gender                    0.05558    0.12392    0.45              0.6543    
## Age                       0.01527    0.00549    2.78              0.0059 ** 
## Race1,2                   1.07595    0.59816    1.80              0.0735 .  
## Race1,2,5                -0.21873    1.00726   -0.22              0.8283    
## Race1,3                   1.05795    1.04342    1.01              0.3118    
## Race1,6                   0.80595    0.71386    1.13              0.2602    
## Race2                     0.37891    0.20413    1.86              0.0648 .  
## Race2,7                  -0.40792    1.00821   -0.40              0.6862    
## Race3                    -0.10284    0.25261   -0.41              0.6844    
## Race5                    -0.37587    1.01518   -0.37              0.7116    
## Race6                     0.87962    1.00679    0.87              0.3833    
## Race7                     0.64665    0.50951    1.27              0.2058    
## morality"Benevolence"    -0.15401    0.34746   -0.44              0.6581    
## morality"Hedonism"       -0.10574    0.64624   -0.16              0.8702    
## morality"Power"          -0.86123    0.63732   -1.35              0.1781    
## morality"Security"       -0.21753    0.29419   -0.74              0.4605    
## morality"Self-direction" -0.37147    0.31052   -1.20              0.2330    
## morality"Stimulation"    -0.04124    0.42243   -0.10              0.9223    
## morality"Tradition"      -1.00631    0.40522   -2.48              0.0138 *  
## morality"Universalism"   -0.51313    0.32399   -1.58              0.1148    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.99 on 206 degrees of freedom
## Multiple R-squared:  0.141,  Adjusted R-squared:  0.0492 
## F-statistic: 1.54 on 22 and 206 DF,  p-value: 0.0649
## 
## 
## $`Admin-Block`
## 
## Call:
## lm(formula = formula_list[[variable]], data = data)
## 
## Residuals:
##    Min     1Q Median     3Q    Max 
## -4.282 -0.978  0.101  1.206  2.993 
## 
## Coefficients:
##                          Estimate Std. Error t value    Pr(>|t|)    
## (Intercept)                4.0768     0.6840    5.96 0.000000011 ***
## cond_broad2. Relative      0.5789     0.3378    1.71      0.0881 .  
## cond_broad3. Low           0.2623     0.3337    0.79      0.4328    
## gender                    -0.0205     0.2098   -0.10      0.9222    
## Age                        0.0205     0.0093    2.20      0.0288 *  
## Race1,2                    1.9093     1.0129    1.89      0.0608 .  
## Race1,2,5                  1.7475     1.7057    1.02      0.3068    
## Race1,3                    1.9757     1.7669    1.12      0.2648    
## Race1,6                    1.6263     1.2088    1.35      0.1800    
## Race2                      0.7152     0.3457    2.07      0.0398 *  
## Race2,7                   -0.7405     1.7073   -0.43      0.6649    
## Race3                     -0.1911     0.4278   -0.45      0.6556    
## Race5                     -0.6216     1.7191   -0.36      0.7180    
## Race6                      1.1981     1.7049    0.70      0.4830    
## Race7                      0.9236     0.8628    1.07      0.2857    
## morality"Benevolence"     -0.2686     0.5884   -0.46      0.6485    
## morality"Hedonism"         0.2970     1.0943    0.27      0.7863    
## morality"Power"           -1.0802     1.0792   -1.00      0.3180    
## morality"Security"        -0.1515     0.4982   -0.30      0.7613    
## morality"Self-direction"  -0.8891     0.5258   -1.69      0.0924 .  
## morality"Stimulation"     -0.2389     0.7153   -0.33      0.7388    
## morality"Tradition"       -1.8991     0.6862   -2.77      0.0062 ** 
## morality"Universalism"    -0.8737     0.5486   -1.59      0.1128    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.7 on 206 degrees of freedom
## Multiple R-squared:  0.155,  Adjusted R-squared:  0.0653 
## F-statistic: 1.72 on 22 and 206 DF,  p-value: 0.0271
## 
## 
## $`Admin-Kick`
## 
## Call:
## lm(formula = formula_list[[variable]], data = data)
## 
## Residuals:
##    Min     1Q Median     3Q    Max 
## -3.930 -1.137  0.188  1.283  3.105 
## 
## Coefficients:
##                           Estimate Std. Error t value       Pr(>|t|)    
## (Intercept)               4.873351   0.700650    6.96 0.000000000046 ***
## cond_broad2. Relative     0.351453   0.346020    1.02          0.311    
## cond_broad3. Low          0.010916   0.341866    0.03          0.975    
## gender                    0.195748   0.214949    0.91          0.364    
## Age                       0.000525   0.009526    0.06          0.956    
## Race1,2                   0.720300   1.037556    0.69          0.488    
## Race1,2,5                -1.613740   1.747182   -0.92          0.357    
## Race1,3                   0.373207   1.809901    0.21          0.837    
## Race1,6                   2.031717   1.238255    1.64          0.102    
## Race2                     0.540928   0.354079    1.53          0.128    
## Race2,7                   0.203104   1.748825    0.12          0.908    
## Race3                    -0.695385   0.438172   -1.59          0.114    
## Race5                    -0.543134   1.760921   -0.31          0.758    
## Race6                    -0.798470   1.746371   -0.46          0.648    
## Race7                     0.142080   0.883788    0.16          0.872    
## morality"Benevolence"    -0.578524   0.602709   -0.96          0.338    
## morality"Hedonism"       -0.579680   1.120962   -0.52          0.606    
## morality"Power"          -1.448564   1.105492   -1.31          0.192    
## morality"Security"       -0.494082   0.510297   -0.97          0.334    
## morality"Self-direction" -0.900695   0.538618   -1.67          0.096 .  
## morality"Stimulation"    -0.699360   0.732747   -0.95          0.341    
## morality"Tradition"      -1.536882   0.702892   -2.19          0.030 *  
## morality"Universalism"   -0.899454   0.561991   -1.60          0.111    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.7 on 206 degrees of freedom
## Multiple R-squared:  0.0932, Adjusted R-squared:  -0.00361 
## F-statistic: 0.963 on 22 and 206 DF,  p-value: 0.513
## 
## 
## $`Admin-Report`
## 
## Call:
## lm(formula = formula_list[[variable]], data = data)
## 
## Residuals:
##    Min     1Q Median     3Q    Max 
##  -3.87  -1.13  -0.05   1.12   3.92 
## 
## Coefficients:
##                          Estimate Std. Error t value   Pr(>|t|)    
## (Intercept)               3.87457    0.69260    5.59 0.00000007 ***
## cond_broad2. Relative    -0.31144    0.34205   -0.91      0.364    
## cond_broad3. Low         -0.08706    0.33794   -0.26      0.797    
## gender                   -0.30709    0.21248   -1.45      0.150    
## Age                       0.02294    0.00942    2.44      0.016 *  
## Race1,2                   2.33627    1.02564    2.28      0.024 *  
## Race1,2,5                -3.15890    1.72712   -1.83      0.069 .  
## Race1,3                   1.59232    1.78912    0.89      0.375    
## Race1,6                   0.96325    1.22404    0.79      0.432    
## Race2                     1.42021    0.35001    4.06 0.00007036 ***
## Race2,7                  -1.30133    1.72874   -0.75      0.452    
## Race3                     0.25830    0.43314    0.60      0.552    
## Race5                     0.99967    1.74070    0.57      0.566    
## Race6                     0.62986    1.72632    0.36      0.716    
## Race7                    -0.29269    0.87364   -0.34      0.738    
## morality"Benevolence"    -0.76815    0.59579   -1.29      0.199    
## morality"Hedonism"        1.50834    1.10809    1.36      0.175    
## morality"Power"          -1.37911    1.09280   -1.26      0.208    
## morality"Security"       -0.53717    0.50444   -1.06      0.288    
## morality"Self-direction" -0.90296    0.53243   -1.70      0.091 .  
## morality"Stimulation"    -0.64192    0.72433   -0.89      0.377    
## morality"Tradition"      -1.15285    0.69482   -1.66      0.099 .  
## morality"Universalism"   -1.21905    0.55554   -2.19      0.029 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.7 on 206 degrees of freedom
## Multiple R-squared:  0.171,  Adjusted R-squared:  0.0827 
## F-statistic: 1.93 on 22 and 206 DF,  p-value: 0.00938
## 
## 
## $`Admin-Pin`
## 
## Call:
## lm(formula = formula_list[[variable]], data = data)
## 
## Residuals:
##    Min     1Q Median     3Q    Max 
## -5.487 -0.321  0.284  0.765  2.058 
## 
## Coefficients:
##                          Estimate Std. Error t value           Pr(>|t|)    
## (Intercept)               4.69361    0.54811    8.56 0.0000000000000026 ***
## cond_broad2. Relative     0.27347    0.27069    1.01              0.314    
## cond_broad3. Low         -0.21980    0.26744   -0.82              0.412    
## gender                    0.19127    0.16815    1.14              0.257    
## Age                       0.01736    0.00745    2.33              0.021 *  
## Race1,2                   0.63829    0.81166    0.79              0.433    
## Race1,2,5                 1.19747    1.36679    0.88              0.382    
## Race1,3                   1.30315    1.41586    0.92              0.358    
## Race1,6                  -0.29173    0.96867   -0.30              0.764    
## Race2                    -0.65283    0.27699   -2.36              0.019 *  
## Race2,7                   0.42287    1.36808    0.31              0.758    
## Race3                     0.37076    0.34277    1.08              0.281    
## Race5                    -0.44794    1.37754   -0.33              0.745    
## Race6                     1.37079    1.36616    1.00              0.317    
## Race7                     1.08301    0.69137    1.57              0.119    
## morality"Benevolence"     0.71441    0.47149    1.52              0.131    
## morality"Hedonism"       -1.41418    0.87691   -1.61              0.108    
## morality"Power"          -0.18296    0.86481   -0.21              0.833    
## morality"Security"        0.21729    0.39920    0.54              0.587    
## morality"Self-direction"  0.67151    0.42135    1.59              0.113    
## morality"Stimulation"     0.99083    0.57322    1.73              0.085 .  
## morality"Tradition"      -0.23819    0.54986   -0.43              0.665    
## morality"Universalism"    0.56041    0.43964    1.27              0.204    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.4 on 206 degrees of freedom
## Multiple R-squared:  0.174,  Adjusted R-squared:  0.0858 
## F-statistic: 1.97 on 22 and 206 DF,  p-value: 0.00768
## 
## 
## $`Admin-Upvote`
## 
## Call:
## lm(formula = formula_list[[variable]], data = data)
## 
## Residuals:
##    Min     1Q Median     3Q    Max 
## -4.178 -0.387  0.201  0.697  2.055 
## 
## Coefficients:
##                          Estimate Std. Error t value            Pr(>|t|)    
## (Intercept)               4.50672    0.47235    9.54 <0.0000000000000002 ***
## cond_broad2. Relative     0.50798    0.23327    2.18              0.0306 *  
## cond_broad3. Low         -0.04889    0.23047   -0.21              0.8322    
## gender                    0.22161    0.14491    1.53              0.1277    
## Age                       0.02063    0.00642    3.21              0.0015 ** 
## Race1,2                   0.58571    0.69949    0.84              0.4034    
## Race1,2,5                -0.01997    1.17789   -0.02              0.9865    
## Race1,3                   1.12954    1.22017    0.93              0.3557    
## Race1,6                   0.08805    0.83479    0.11              0.9161    
## Race2                    -0.49868    0.23871   -2.09              0.0379 *  
## Race2,7                   0.25347    1.17900    0.21              0.8300    
## Race3                    -0.07526    0.29540   -0.25              0.7991    
## Race5                    -0.59285    1.18715   -0.50              0.6180    
## Race6                     1.19159    1.17734    1.01              0.3127    
## Race7                     0.94710    0.59582    1.59              0.1135    
## morality"Benevolence"     0.53703    0.40633    1.32              0.1877    
## morality"Hedonism"        0.48230    0.75571    0.64              0.5241    
## morality"Power"           0.69532    0.74529    0.93              0.3519    
## morality"Security"        0.24731    0.34403    0.72              0.4730    
## morality"Self-direction"  0.60806    0.36312    1.67              0.0955 .  
## morality"Stimulation"     0.78733    0.49399    1.59              0.1125    
## morality"Tradition"      -0.01996    0.47387   -0.04              0.9664    
## morality"Universalism"    0.49021    0.37888    1.29              0.1972    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.2 on 206 degrees of freedom
## Multiple R-squared:  0.174,  Adjusted R-squared:  0.0863 
## F-statistic: 1.98 on 22 and 206 DF,  p-value: 0.00744
## 
## 
## $`Admin-Monitor`
## 
## Call:
## lm(formula = formula_list[[variable]], data = data)
## 
## Residuals:
##    Min     1Q Median     3Q    Max 
## -4.542 -0.865  0.280  0.957  2.255 
## 
## Coefficients:
##                          Estimate Std. Error t value            Pr(>|t|)    
## (Intercept)               5.41722    0.56809    9.54 <0.0000000000000002 ***
## cond_broad2. Relative     0.31082    0.28055    1.11              0.2692    
## cond_broad3. Low          0.06968    0.27719    0.25              0.8018    
## gender                    0.05245    0.17428    0.30              0.7638    
## Age                       0.00967    0.00772    1.25              0.2121    
## Race1,2                   0.26579    0.84126    0.32              0.7524    
## Race1,2,5                 0.53530    1.41663    0.38              0.7059    
## Race1,3                  -0.02627    1.46748   -0.02              0.9857    
## Race1,6                   0.41807    1.00398    0.42              0.6775    
## Race2                     0.74862    0.28709    2.61              0.0098 ** 
## Race2,7                  -1.28514    1.41796   -0.91              0.3658    
## Race3                    -0.28435    0.35527   -0.80              0.4244    
## Race5                    -1.04932    1.42776   -0.73              0.4632    
## Race6                     1.68586    1.41597    1.19              0.2352    
## Race7                     1.07682    0.71658    1.50              0.1344    
## morality"Benevolence"    -0.56020    0.48868   -1.15              0.2530    
## morality"Hedonism"       -0.92825    0.90888   -1.02              0.3083    
## morality"Power"          -1.77186    0.89634   -1.98              0.0494 *  
## morality"Security"       -0.58699    0.41375   -1.42              0.1575    
## morality"Self-direction" -0.81560    0.43671   -1.87              0.0632 .  
## morality"Stimulation"    -0.44549    0.59412   -0.75              0.4542    
## morality"Tradition"      -1.19086    0.56991   -2.09              0.0379 *  
## morality"Universalism"   -1.13718    0.45567   -2.50              0.0134 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.4 on 206 degrees of freedom
## Multiple R-squared:  0.125,  Adjusted R-squared:  0.0312 
## F-statistic: 1.33 on 22 and 206 DF,  p-value: 0.152
## 
## 
## $`Admin-EncourageOthersReport`
## 
## Call:
## lm(formula = formula_list[[variable]], data = data)
## 
## Residuals:
##    Min     1Q Median     3Q    Max 
##  -4.81  -1.12   0.00   1.28   3.51 
## 
## Coefficients:
##                          Estimate Std. Error t value    Pr(>|t|)    
## (Intercept)               4.03670    0.72857    5.54 0.000000091 ***
## cond_broad2. Relative     0.13213    0.35981    0.37       0.714    
## cond_broad3. Low          0.44693    0.35549    1.26       0.210    
## gender                    0.24125    0.22351    1.08       0.282    
## Age                       0.01082    0.00991    1.09       0.276    
## Race1,2                   1.08973    1.07890    1.01       0.314    
## Race1,2,5                 1.40465    1.81681    0.77       0.440    
## Race1,3                   1.13233    1.88203    0.60       0.548    
## Race1,6                   1.21921    1.28760    0.95       0.345    
## Race2                     0.83484    0.36819    2.27       0.024 *  
## Race2,7                   0.42303    1.81852    0.23       0.816    
## Race3                    -0.28427    0.45563   -0.62       0.533    
## Race5                     1.46350    1.83110    0.80       0.425    
## Race6                    -0.60943    1.81597   -0.34       0.738    
## Race7                     0.04344    0.91901    0.05       0.962    
## morality"Benevolence"    -0.62930    0.62673   -1.00       0.317    
## morality"Hedonism"       -0.14134    1.16563   -0.12       0.904    
## morality"Power"          -2.10010    1.14955   -1.83       0.069 .  
## morality"Security"       -0.70285    0.53063   -1.32       0.187    
## morality"Self-direction" -1.31966    0.56008   -2.36       0.019 *  
## morality"Stimulation"    -0.83979    0.76195   -1.10       0.272    
## morality"Tradition"      -1.77230    0.73090   -2.42       0.016 *  
## morality"Universalism"   -1.32792    0.58439   -2.27       0.024 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.8 on 206 degrees of freedom
## Multiple R-squared:  0.111,  Adjusted R-squared:  0.0159 
## F-statistic: 1.17 on 22 and 206 DF,  p-value: 0.28

Moderations

Just significant moderations