This is an R Markdown document. Markdown is a simple formatting syntax for authoring HTML, PDF, and MS Word documents. For more details on using R Markdown see http://rmarkdown.rstudio.com.
When you click the Knit button a document will be generated that includes both content as well as the output of any embedded R code chunks within the document. You can embed an R code chunk like this:
library(ISLR2)
names(Smarket)
## [1] "Year" "Lag1" "Lag2" "Lag3" "Lag4" "Lag5"
## [7] "Volume" "Today" "Direction"
dim(Smarket)
## [1] 1250 9
summary(Smarket)
## Year Lag1 Lag2 Lag3
## Min. :2001 Min. :-4.922000 Min. :-4.922000 Min. :-4.922000
## 1st Qu.:2002 1st Qu.:-0.639500 1st Qu.:-0.639500 1st Qu.:-0.640000
## Median :2003 Median : 0.039000 Median : 0.039000 Median : 0.038500
## Mean :2003 Mean : 0.003834 Mean : 0.003919 Mean : 0.001716
## 3rd Qu.:2004 3rd Qu.: 0.596750 3rd Qu.: 0.596750 3rd Qu.: 0.596750
## Max. :2005 Max. : 5.733000 Max. : 5.733000 Max. : 5.733000
## Lag4 Lag5 Volume Today
## Min. :-4.922000 Min. :-4.92200 Min. :0.3561 Min. :-4.922000
## 1st Qu.:-0.640000 1st Qu.:-0.64000 1st Qu.:1.2574 1st Qu.:-0.639500
## Median : 0.038500 Median : 0.03850 Median :1.4229 Median : 0.038500
## Mean : 0.001636 Mean : 0.00561 Mean :1.4783 Mean : 0.003138
## 3rd Qu.: 0.596750 3rd Qu.: 0.59700 3rd Qu.:1.6417 3rd Qu.: 0.596750
## Max. : 5.733000 Max. : 5.73300 Max. :3.1525 Max. : 5.733000
## Direction
## Down:602
## Up :648
##
##
##
##
pairs(Smarket)
cor(Smarket[, -9])
## Year Lag1 Lag2 Lag3 Lag4
## Year 1.00000000 0.029699649 0.030596422 0.033194581 0.035688718
## Lag1 0.02969965 1.000000000 -0.026294328 -0.010803402 -0.002985911
## Lag2 0.03059642 -0.026294328 1.000000000 -0.025896670 -0.010853533
## Lag3 0.03319458 -0.010803402 -0.025896670 1.000000000 -0.024051036
## Lag4 0.03568872 -0.002985911 -0.010853533 -0.024051036 1.000000000
## Lag5 0.02978799 -0.005674606 -0.003557949 -0.018808338 -0.027083641
## Volume 0.53900647 0.040909908 -0.043383215 -0.041823686 -0.048414246
## Today 0.03009523 -0.026155045 -0.010250033 -0.002447647 -0.006899527
## Lag5 Volume Today
## Year 0.029787995 0.53900647 0.030095229
## Lag1 -0.005674606 0.04090991 -0.026155045
## Lag2 -0.003557949 -0.04338321 -0.010250033
## Lag3 -0.018808338 -0.04182369 -0.002447647
## Lag4 -0.027083641 -0.04841425 -0.006899527
## Lag5 1.000000000 -0.02200231 -0.034860083
## Volume -0.022002315 1.00000000 0.014591823
## Today -0.034860083 0.01459182 1.000000000
attach(Smarket)
plot(Volume)
glm.fits<-glm(
Direction ~ Lag1 + Lag2 + Lag3 + Lag4 +
Lag5 + Volume,
data = Smarket, family = binomial
)
summary(glm.fits)
##
## Call:
## glm(formula = Direction ~ Lag1 + Lag2 + Lag3 + Lag4 + Lag5 +
## Volume, family = binomial, data = Smarket)
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -0.126000 0.240736 -0.523 0.601
## Lag1 -0.073074 0.050167 -1.457 0.145
## Lag2 -0.042301 0.050086 -0.845 0.398
## Lag3 0.011085 0.049939 0.222 0.824
## Lag4 0.009359 0.049974 0.187 0.851
## Lag5 0.010313 0.049511 0.208 0.835
## Volume 0.135441 0.158360 0.855 0.392
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 1731.2 on 1249 degrees of freedom
## Residual deviance: 1727.6 on 1243 degrees of freedom
## AIC: 1741.6
##
## Number of Fisher Scoring iterations: 3
coef(glm.fits)
## (Intercept) Lag1 Lag2 Lag3 Lag4 Lag5
## -0.126000257 -0.073073746 -0.042301344 0.011085108 0.009358938 0.010313068
## Volume
## 0.135440659
summary(glm.fits)$coef
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -0.126000257 0.24073574 -0.5233966 0.6006983
## Lag1 -0.073073746 0.05016739 -1.4565986 0.1452272
## Lag2 -0.042301344 0.05008605 -0.8445733 0.3983491
## Lag3 0.011085108 0.04993854 0.2219750 0.8243333
## Lag4 0.009358938 0.04997413 0.1872757 0.8514445
## Lag5 0.010313068 0.04951146 0.2082966 0.8349974
## Volume 0.135440659 0.15835970 0.8552723 0.3924004
summary(glm.fits)$coef[, 4]
## (Intercept) Lag1 Lag2 Lag3 Lag4 Lag5
## 0.6006983 0.1452272 0.3983491 0.8243333 0.8514445 0.8349974
## Volume
## 0.3924004
glm.probs <- predict(glm.fits, type = "response")
glm.probs[1:10]
## 1 2 3 4 5 6 7 8
## 0.5070841 0.4814679 0.4811388 0.5152224 0.5107812 0.5069565 0.4926509 0.5092292
## 9 10
## 0.5176135 0.4888378
contrasts(Direction)
## Up
## Down 0
## Up 1
glm.pred <- rep("Down", 1250)
glm.pred[glm.probs > .5] = "Up"
table(glm.pred, Direction)
## Direction
## glm.pred Down Up
## Down 145 141
## Up 457 507
(507 + 145) / 1250
## [1] 0.5216
mean(glm.pred == Direction)
## [1] 0.5216
train <- (Year < 2005)
Smarket.2005 <- Smarket[!train, ]
dim(Smarket.2005)
## [1] 252 9
Direction.2005 <- Direction[!train]
glm.fits <- glm(
Direction ~ Lag1 + Lag2 + Lag3 + Lag4 + Lag5 + Volume,
data = Smarket, family = binomial, subset = train
)
glm.probs <- predict(glm.fits, Smarket.2005,
type = "response")
glm.pred <- rep("Down", 252)
glm.pred[glm.probs > .5] <- "Up"
table(glm.pred, Direction.2005)
## Direction.2005
## glm.pred Down Up
## Down 77 97
## Up 34 44
Direction.2005
## [1] Down Down Down Up Down Up Down Up Down Up Up Down Down Down Down
## [16] Up Up Up Down Up Up Up Down Up Down Up Down Up Up Up
## [31] Up Up Down Up Down Up Up Up Down Up Down Up Up Up Down
## [46] Down Up Down Up Down Down Up Down Down Down Up Down Up Down Up
## [61] Down Down Up Up Up Up Down Up Up Down Down Down Up Up Down
## [76] Up Down Up Down Up Down Up Up Down Up Down Down Up Down Up
## [91] Down Down Up Up Up Up Down Up Up Down Up Up Down Up Up
## [106] Down Up Down Down Up Down Up Up Up Up Up Down Down Up Down
## [121] Down Down Up Down Down Up Up Down Up Up Up Up Up Up Up
## [136] Down Up Up Down Up Down Up Up Up Down Up Up Up Down Down
## [151] Down Up Down Up Down Up Down Up Down Up Up Down Down Up Down
## [166] Up Down Up Up Down Up Up Down Up Down Down Down Up Up Down
## [181] Down Down Up Up Up Up Up Up Up Down Down Down Down Up Down
## [196] Down Down Down Up Up Down Up Down Up Up Down Down Down Up Up
## [211] Down Up Up Up Up Down Up Up Up Down Down Up Up Up Up
## [226] Up Up Up Down Up Down Up Up Down Up Down Down Up Up Up
## [241] Up Down Down Down Down Up Up Up Down Up Down Down
## Levels: Down Up
mean(glm.pred == Direction.2005)
## [1] 0.4801587
mean(glm.pred != Direction.2005)
## [1] 0.5198413
glm.fits <- glm(Direction ~ Lag1 + Lag2, data = Smarket,
family = binomial, subset = train)
glm.probs <- predict(glm.fits, Smarket.2005,
type = "response")
glm.pred <- rep("Down", 252)
glm.pred[glm.probs > .5] <- "Up"
table(glm.pred, Direction.2005)
## Direction.2005
## glm.pred Down Up
## Down 35 35
## Up 76 106
Direction.2005
## [1] Down Down Down Up Down Up Down Up Down Up Up Down Down Down Down
## [16] Up Up Up Down Up Up Up Down Up Down Up Down Up Up Up
## [31] Up Up Down Up Down Up Up Up Down Up Down Up Up Up Down
## [46] Down Up Down Up Down Down Up Down Down Down Up Down Up Down Up
## [61] Down Down Up Up Up Up Down Up Up Down Down Down Up Up Down
## [76] Up Down Up Down Up Down Up Up Down Up Down Down Up Down Up
## [91] Down Down Up Up Up Up Down Up Up Down Up Up Down Up Up
## [106] Down Up Down Down Up Down Up Up Up Up Up Down Down Up Down
## [121] Down Down Up Down Down Up Up Down Up Up Up Up Up Up Up
## [136] Down Up Up Down Up Down Up Up Up Down Up Up Up Down Down
## [151] Down Up Down Up Down Up Down Up Down Up Up Down Down Up Down
## [166] Up Down Up Up Down Up Up Down Up Down Down Down Up Up Down
## [181] Down Down Up Up Up Up Up Up Up Down Down Down Down Up Down
## [196] Down Down Down Up Up Down Up Down Up Up Down Down Down Up Up
## [211] Down Up Up Up Up Down Up Up Up Down Down Up Up Up Up
## [226] Up Up Up Down Up Down Up Up Down Up Down Down Up Up Up
## [241] Up Down Down Down Down Up Up Up Down Up Down Down
## Levels: Down Up
mean(glm.pred == Direction.2005)
## [1] 0.5595238
106 / (106 + 76)
## [1] 0.5824176
predict(glm.fits,
newdata =
data.frame(Lag1 = c(1.2, 1.5), Lag2 = c(1.1, -0.8)),
type = "response"
)
## 1 2
## 0.4791462 0.4960939
# homework3 starts here
library(MASS)
##
## Attaching package: 'MASS'
## The following object is masked from 'package:ISLR2':
##
## Boston
lda.fit <- lda(Direction ~ Lag1 + Lag2, data = Smarket,
subset = train)
lda.fit
## Call:
## lda(Direction ~ Lag1 + Lag2, data = Smarket, subset = train)
##
## Prior probabilities of groups:
## Down Up
## 0.491984 0.508016
##
## Group means:
## Lag1 Lag2
## Down 0.04279022 0.03389409
## Up -0.03954635 -0.03132544
##
## Coefficients of linear discriminants:
## LD1
## Lag1 -0.6420190
## Lag2 -0.5135293
lda.pred <- predict(lda.fit, Smarket.2005)
names(lda.pred)
## [1] "class" "posterior" "x"
lda.class <- lda.pred$class
table(lda.class, Direction.2005)
## Direction.2005
## lda.class Down Up
## Down 35 35
## Up 76 106
mean(lda.class == Direction.2005)
## [1] 0.5595238
sum(lda.pred$posterior[, 1] >= .5)
## [1] 70
sum(lda.pred$posterior[, 1] < .5)
## [1] 182
lda.pred$posterior[1:20, 1]
## 999 1000 1001 1002 1003 1004 1005 1006
## 0.4901792 0.4792185 0.4668185 0.4740011 0.4927877 0.4938562 0.4951016 0.4872861
## 1007 1008 1009 1010 1011 1012 1013 1014
## 0.4907013 0.4844026 0.4906963 0.5119988 0.4895152 0.4706761 0.4744593 0.4799583
## 1015 1016 1017 1018
## 0.4935775 0.5030894 0.4978806 0.4886331
lda.class[1:20]
## [1] Up Up Up Up Up Up Up Up Up Up Up Down Up Up Up
## [16] Up Up Down Up Up
## Levels: Down Up
sum(lda.pred$posterior[, 1] > .9)
## [1] 0
qda.fit <- qda(Direction ~ Lag1 + Lag2, data = Smarket,
subset = train)
qda.fit
## Call:
## qda(Direction ~ Lag1 + Lag2, data = Smarket, subset = train)
##
## Prior probabilities of groups:
## Down Up
## 0.491984 0.508016
##
## Group means:
## Lag1 Lag2
## Down 0.04279022 0.03389409
## Up -0.03954635 -0.03132544
qda.class <- predict(qda.fit, Smarket.2005)$class
table(qda.class, Direction.2005)
## Direction.2005
## qda.class Down Up
## Down 30 20
## Up 81 121
Direction.2005
## [1] Down Down Down Up Down Up Down Up Down Up Up Down Down Down Down
## [16] Up Up Up Down Up Up Up Down Up Down Up Down Up Up Up
## [31] Up Up Down Up Down Up Up Up Down Up Down Up Up Up Down
## [46] Down Up Down Up Down Down Up Down Down Down Up Down Up Down Up
## [61] Down Down Up Up Up Up Down Up Up Down Down Down Up Up Down
## [76] Up Down Up Down Up Down Up Up Down Up Down Down Up Down Up
## [91] Down Down Up Up Up Up Down Up Up Down Up Up Down Up Up
## [106] Down Up Down Down Up Down Up Up Up Up Up Down Down Up Down
## [121] Down Down Up Down Down Up Up Down Up Up Up Up Up Up Up
## [136] Down Up Up Down Up Down Up Up Up Down Up Up Up Down Down
## [151] Down Up Down Up Down Up Down Up Down Up Up Down Down Up Down
## [166] Up Down Up Up Down Up Up Down Up Down Down Down Up Up Down
## [181] Down Down Up Up Up Up Up Up Up Down Down Down Down Up Down
## [196] Down Down Down Up Up Down Up Down Up Up Down Down Down Up Up
## [211] Down Up Up Up Up Down Up Up Up Down Down Up Up Up Up
## [226] Up Up Up Down Up Down Up Up Down Up Down Down Up Up Up
## [241] Up Down Down Down Down Up Up Up Down Up Down Down
## Levels: Down Up
mean(qda.class == Direction.2005)
## [1] 0.5992063
mean(Lag1[train][Direction[train] == "Down"])
## [1] 0.04279022
sd(Lag1[train][Direction[train] == "Down"])
## [1] 1.227446
library(class)
train.X <- cbind(Lag1, Lag2)[train, ]
test.X <- cbind(Lag1, Lag2)[!train, ]
train.Direction <- Direction[train]
set.seed(1)
knn.pred <- knn(train.X, test.X, train.Direction, k = 1)
table(knn.pred, Direction.2005)
## Direction.2005
## knn.pred Down Up
## Down 43 58
## Up 68 83
(83 + 43) / 252
## [1] 0.5
knn.pred <- knn(train.X, test.X, train.Direction, k = 3)
table(knn.pred, Direction.2005)
## Direction.2005
## knn.pred Down Up
## Down 48 54
## Up 63 87
mean(knn.pred == Direction.2005)
## [1] 0.5357143
dim(Caravan)
## [1] 5822 86
attach(Caravan)
summary(Purchase)
## No Yes
## 5474 348
348 / 5822
## [1] 0.05977327
standardized.X <- scale(Caravan[, -86])
var(Caravan[, 1])
## [1] 165.0378
var(Caravan[, 2])
## [1] 0.1647078
var(standardized.X[, 1])
## [1] 1
var(standardized.X[, 2])
## [1] 1
test <- 1:1000
train.X <- standardized.X[-test, ]
test.X <- standardized.X[test, ]
train.Y <- Purchase[-test]
test.Y <- Purchase[test]
set.seed(1)
knn.pred <- knn(train.X, test.X, train.Y, k = 1)
mean(test.Y != knn.pred)
## [1] 0.118
mean(test.Y != "No")
## [1] 0.059
table(knn.pred, test.Y)
## test.Y
## knn.pred No Yes
## No 873 50
## Yes 68 9
9 / (68 + 9)
## [1] 0.1168831
knn.pred <- knn(train.X, test.X, train.Y, k = 3)
table(knn.pred, test.Y)
## test.Y
## knn.pred No Yes
## No 920 54
## Yes 21 5
5 / 26
## [1] 0.1923077
knn.pred <- knn(train.X, test.X, train.Y, k = 5)
table(knn.pred, test.Y)
## test.Y
## knn.pred No Yes
## No 930 55
## Yes 11 4
4 / 15
## [1] 0.2666667
glm.fits <- glm(Purchase ~., data = Caravan,
family = binomial, subset = -test)
## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
glm.probs <- predict(glm.fits, Caravan[test, ],
type = "response")
glm.pred <- rep("No", 1000)
glm.pred[glm.probs > .5] <- "Yes"
table(glm.pred, test.Y)
## test.Y
## glm.pred No Yes
## No 934 59
## Yes 7 0
glm.pred <- rep("No", 1000)
glm.pred[glm.probs > .25] <- "Yes"
table(glm.pred, test.Y)
## test.Y
## glm.pred No Yes
## No 919 48
## Yes 22 11
11 / (22 + 11)
## [1] 0.3333333
You can also embed plots, for example:
Note that the echo = FALSE
parameter was added to the
code chunk to prevent printing of the R code that generated the
plot.