pacman::p_load(tidyverse, ggplot2, irr, readxl, GGally, dplyr)
data <- read_excel("StatementIOR_240403.xlsx")
View(data)
domains <- data[, c("CynDom", "LesDom", "RobDom")] #need IOR on this df
constructs <- data[, c("CynCon", "LesCon", "RobCon")] #need IOR on this df
human_df <- filter(data, Category == "Human")
animal_df <- filter(data, Category == "Animal")
planet_df <- filter(data, Category == "Planet")
At this point, we have the full dataframe (‘data’) consisting of all 78 statements. We also have the ‘domains’ and ‘constructs’ dataframes which also consist of all 78 statements and each only contain the columns that we want to use for the IOR for domains and constructs, respectively.
I also have three smaller dataframes: animal_df, human_df, and planet_df, which each contain all the original columns, but only the 26 relevant statements each. I now need to take each of these dataframes and make the domain and construct dataframes for each.
animal_dom <- animal_df[, c("CynDom", "LesDom", "RobDom")] #need IOR on this df
animal_con <- animal_df[, c("CynCon", "LesCon", "RobCon")] #need IOR on this df
human_dom <- human_df[, c("CynDom", "LesDom", "RobDom")] #need IOR on this df
human_con <- human_df[, c("CynCon", "LesCon", "RobCon")] #need IOR on this df
planet_dom <- planet_df[, c("CynDom", "LesDom", "RobDom")] #need IOR on this df
planet_con <- planet_df[, c("CynCon", "LesCon", "RobCon")] #need IOR on this df
domainsIOR <- kappam.fleiss(domains)
print(domainsIOR)
## Fleiss' Kappa for m Raters
##
## Subjects = 78
## Raters = 3
## Kappa = 0.691
##
## z = 32
## p-value = 0
constructIOR <- kappam.fleiss(constructs)
print(constructIOR)
## Fleiss' Kappa for m Raters
##
## Subjects = 78
## Raters = 3
## Kappa = 0.412
##
## z = 31.4
## p-value = 0
animaldomainIOR <- kappam.fleiss(animal_dom)
print(animaldomainIOR)
## Fleiss' Kappa for m Raters
##
## Subjects = 26
## Raters = 3
## Kappa = 0.734
##
## z = 17
## p-value = 0
animalconstructIOR <- kappam.fleiss(animal_con)
print(animalconstructIOR)
## Fleiss' Kappa for m Raters
##
## Subjects = 26
## Raters = 3
## Kappa = 0.556
##
## z = 17.7
## p-value = 0
humandomainIOR <- kappam.fleiss(human_dom)
print(humandomainIOR)
## Fleiss' Kappa for m Raters
##
## Subjects = 26
## Raters = 3
## Kappa = 0.612
##
## z = 14.6
## p-value = 0
humanconstructIOR <- kappam.fleiss(human_con)
print(humanconstructIOR)
## Fleiss' Kappa for m Raters
##
## Subjects = 26
## Raters = 3
## Kappa = 0.285
##
## z = 11.2
## p-value = 0
planetdomainIOR <- kappam.fleiss(planet_dom)
print(planetdomainIOR)
## Fleiss' Kappa for m Raters
##
## Subjects = 26
## Raters = 3
## Kappa = 0.695
##
## z = 17.4
## p-value = 0
planetconstructIOR <- kappam.fleiss(planet_con)
print(planetconstructIOR)
## Fleiss' Kappa for m Raters
##
## Subjects = 26
## Raters = 3
## Kappa = 0.363
##
## z = 13.8
## p-value = 0
# Create subsets of the data
LesCynDom <- data[, c("CynDom", "LesDom")]
LesRobDom <- data[, c("RobDom", "LesDom")]
CynRobDom <- data[, c("CynDom", "RobDom")]
# Compute Fleiss' Kappa for each pair of observers
kappa_LesCynDom <- kappam.fleiss(LesCynDom)
kappa_LesRobDom <- kappam.fleiss(LesRobDom)
kappa_CynRobDom <- kappam.fleiss(CynRobDom)
# Print the results
print(kappa_LesCynDom) #This will compare Lesley and Cynthia at domain level
## Fleiss' Kappa for m Raters
##
## Subjects = 78
## Raters = 2
## Kappa = 0.702
##
## z = 19.3
## p-value = 0
print(kappa_LesRobDom) #This will compare Lesley and Robin at domain level
## Fleiss' Kappa for m Raters
##
## Subjects = 78
## Raters = 2
## Kappa = 0.658
##
## z = 17.6
## p-value = 0
print(kappa_CynRobDom) #This will compare Robin and Cynthia at domain level
## Fleiss' Kappa for m Raters
##
## Subjects = 78
## Raters = 2
## Kappa = 0.711
##
## z = 18
## p-value = 0
# Create subsets of the data
LesCynCon <- data[, c("CynCon", "LesCon")]
LesRobCon <- data[, c("RobCon", "LesCon")]
CynRobCon <- data[, c("CynCon", "RobCon")]
# Compute Fleiss' Kappa for each pair of observers
kappa_LesCynCon <- kappam.fleiss(LesCynCon)
kappa_LesRobCon <- kappam.fleiss(LesRobCon)
kappa_CynRobCon <- kappam.fleiss(CynRobCon)
# Print the results
print(kappa_LesCynCon) #This will compare Lesley and Cynthia at construct level
## Fleiss' Kappa for m Raters
##
## Subjects = 78
## Raters = 2
## Kappa = 0.479
##
## z = 20.8
## p-value = 0
print(kappa_LesRobCon) #This will compare Lesley and Robin at construct level
## Fleiss' Kappa for m Raters
##
## Subjects = 78
## Raters = 2
## Kappa = 0.384
##
## z = 16.1
## p-value = 0
print(kappa_CynRobCon) #This will compare Robin and Cynthia at construct level
## Fleiss' Kappa for m Raters
##
## Subjects = 78
## Raters = 2
## Kappa = 0.371
##
## z = 15.8
## p-value = 0