October 14, 2015
All source code at https://github.com/mine-cetinkaya-rundel/rworkshop-mem
Slides at http://rpubs.com/minebocek/117428
R: Statistical programming language
Both are free and open-source
Traditionally you would install R and RStudio on your computer
We will skip over that step for now for efficiency and use the RStudio server at
https://vm-manage.oit.duke.edu/containers
(Log in with your Duke Net ID and password)
The version of R is text that pops up in the Console when you start RStudio
To find out the version of RStudio go to Help \(\rightarrow\) About RStudio
It's good practice to keep both R and RStudio up to date
Packages are the fundamental units of reproducible R code. They include reusable R functions, the documentation that describes how to use them, and (often) sample data. (From: http://r-pkgs.had.co.nz)
We will use the ggplot2 package for plots and dplyr for data wrangling in this workshop
Install these packages by running the following in the Console:
install.packages("ggplot2")
install.packages("dplyr")
library(ggplot2) library(dplyr)
R Markdown is an authoring format that enables easy creation of dynamic documents, presentations, and reports from R.
It combines the core syntax of markdown (an easy-to-write plain text format) with embedded R code chunks that are run so their output can be included in the final document.
R Markdown documents are fully reproducible (they can be automatically regenerated whenever underlying R code or data changes).
Source: http://rmarkdown.rstudio.com/
Create your first R Markdown document, knit it, and examine the source code and the output.
File \(\rightarrow\) R Markdown…
Enter a title (e.g. "My first R Markdown document") and author info
Choose Document as file type, and HTML as the output
Hit OK
Markdown is a simple formatting language designed to make authoring content easy for everyone.
Rather than writing complex markup code (e.g. HTML or LaTeX), Markdown enables the use of a syntax much more like plain-text email.
Within an R Markdown file, R Code Chunks can be embedded using the native Markdown syntax for fenced code regions.
How many code chunks are in your R Markdown document?
What does each code chunk do? You may not understand the R syntax yet, but you should be able to compare the source file and the output to answer this question.
You can also evaluate R expressions inline by enclosing the expression within a single back-tick qualified with ‘r’. For example, the following code:
Results in this output: "I counted 2 red trucks on the highway."
Suppose Sammy works on average 8.37 hours per day, 5 days per week. How many hours does Sammy work on average per week?
Add a sentence to your document that includes simple inline R code that answers this question, along the lines of…
"Sammy works 8.37 * 5 hours per week, on average."
R Markdown workspace and Console workspace are independent of each other
If you define a variable in your Console and it shows up in the Environment tab, it is not going to be automatically included in your R Markdown document
If you define a variable in your R Markdown document, it won't automatically be available in your Console
[ Demo ]
Tip: Use the Run all previous chunks in the source file and Run current chunk code functionality in the buttons in each code chunk to help manage workspaces.
The fact that the two workspaces do not automatically have access to the same variables might / will be frustrating at first.
But this is not a bug, in fact, it's a functionality that helps reproducibility, as it ensures that all variables, functions, etc. that are being used in the R Markdown document are explicitly defined or loaded.
Define x = 2 in the Console. Then, in your Console run x * 3. Does your code run as expected?
Now, insert a new code chunk in your R Markdown document and in this chunk type x * 3 only. Knit your document. Does the document compile, or do you get an error? If you get an error, what does the error say, and how can you fix it? Implement the fix and Knit your document. Make sure you are able to compile without errors before you move on.
Tip: Insert a new code chunk bu clicking Chunks \(\rightarrow\) Insert Chunk.
Next insert another code chunk in your R Markdown document and define y = 4 and calculate y + 5. Knit your document. Does everything work as expected?
Now run y + 5 in your Console. Does your code run as expected or do you get an error? If you get an error, what does the error say, and how can you fix it? Implement the fix.
You can hide the code, hide the result, hide warnings, messages, etc.
Refer to the handy R Markdown cheatsheet
Another good reference: http://rmarkdown.rstudio.com/authoring_rcodechunks.html
bike <- read.csv("https://stat.duke.edu/~mc301/data/nc_bike_crash.csv",
sep = ";", stringsAsFactors = FALSE, na.strings = c("NA", "", ".")) %>%
tbl_df()
View the names of variables via
names(bike)
## [1] "FID" "OBJECTID" "AmbulanceR" "BikeAge_Gr" "Bike_Age" ## [6] "Bike_Alc_D" "Bike_Dir" "Bike_Injur" "Bike_Pos" "Bike_Race" ## [11] "Bike_Sex" "City" "County" "CrashAlcoh" "CrashDay" ## [16] "Crash_Date" "Crash_Grp" "Crash_Hour" "Crash_Loc" "Crash_Mont" ## [21] "Crash_Time" "Crash_Type" "Crash_Ty_1" "Crash_Year" "Crsh_Sevri" ## [26] "Developmen" "DrvrAge_Gr" "Drvr_Age" "Drvr_Alc_D" "Drvr_EstSp" ## [31] "Drvr_Injur" "Drvr_Race" "Drvr_Sex" "Drvr_VehTy" "ExcsSpdInd" ## [36] "Hit_Run" "Light_Cond" "Locality" "Num_Lanes" "Num_Units" ## [41] "Rd_Charact" "Rd_Class" "Rd_Conditi" "Rd_Config" "Rd_Defects" ## [46] "Rd_Feature" "Rd_Surface" "Region" "Rural_Urba" "Speed_Limi" ## [51] "Traff_Cntr" "Weather" "Workzone_I" "Location"
and see detailed descriptions at https://stat.duke.edu/~mc301/data/nc_bike_crash.html.
By default R will convert character vectors into factors when they are included in a data frame.
Sometimes this is useful, sometimes it isn't – either way it is important to know what type/class you are working with.
This behavior can be changed using the stringsAsFactors = FALSE when loading a data drame.
In the Environment, click on the name of the data frame to view it in the data viewer
Use the str() function to compactly display the internal structure of an R object
str(bike)
## Classes 'tbl_df', 'tbl' and 'data.frame': 5716 obs. of 54 variables: ## $ FID : int 18 29 33 35 49 53 56 60 63 66 ... ## $ OBJECTID : int 19 30 34 36 50 54 57 61 64 67 ... ## $ AmbulanceR: chr "No" "Yes" "No" "Yes" ... ## $ BikeAge_Gr: chr NA "50-59" NA "16-19" ... ## $ Bike_Age : int 6 51 10 17 6 52 18 40 6 7 ... ## $ Bike_Alc_D: chr "No" "No" "No" "No" ... ## $ Bike_Dir : chr "Not Applicable" "With Traffic" "With Traffic" NA ... ## $ Bike_Injur: chr "C: Possible Injury" "C: Possible Injury" "Injury" "B: Evident Injury" ... ## $ Bike_Pos : chr "Driveway / Alley" "Travel Lane" "Travel Lane" "Travel Lane" ... ## $ Bike_Race : chr "Black" "Black" "Black" "White" ... ## $ Bike_Sex : chr "Female" "Male" "Male" "Male" ... ## $ City : chr "Durham" "Greenville" "Farmville" "Charlotte" ... ## $ County : chr "Durham" "Pitt" "Pitt" "Mecklenburg" ... ## $ CrashAlcoh: chr "No" "No" "No" "No" ... ## $ CrashDay : chr "01-01-06" "01-01-02" "01-01-07" "01-01-05" ... ## $ Crash_Date: chr "2007-01-06" "2007-01-09" "2007-01-14" "2007-01-12" ... ## $ Crash_Grp : chr "Bicyclist Failed to Yield - Midblock" "Crossing Paths - Other Circumstances" "Bicyclist Failed to Yield - Sign-Controlled Intersection" "Loss of Control / Turning Error" ... ## $ Crash_Hour: int 13 23 16 19 12 20 19 14 16 0 ... ## $ Crash_Loc : chr "Non-Intersection" "Intersection-Related" "Intersection" "Intersection" ... ## $ Crash_Mont: chr NA NA NA NA ... ## $ Crash_Time: chr "0001-01-01T08:21:58-04:56" "0001-01-01T18:12:58-04:56" "0001-01-01T11:48:58-04:56" "0001-01-01T14:59:58-04:56" ... ## $ Crash_Type: chr "Bicyclist Ride Out - Residential Driveway" "Crossing Paths - Intersection - Other /" "Bicyclist Ride Through - Sign-Controlled Intersection" "Motorist Lost Control - Other /" ... ## $ Crash_Ty_1: int 353311 211180 111144 119139 112114 311231 119144 132180 112142 460910 ... ## $ Crash_Year: int 2007 2007 2007 2007 2007 2007 2007 2007 2007 2007 ... ## $ Crsh_Sevri: chr "C: Possible Injury" "C: Possible Injury" "O: No Injury" "B: Evident Injury" ... ## $ Developmen: chr "Residential" "Commercial" "Residential" "Residential" ... ## $ DrvrAge_Gr: chr "60-69" "30-39" "50-59" "30-39" ... ## $ Drvr_Age : int 66 34 52 33 NA 20 40 NA 17 51 ... ## $ Drvr_Alc_D: chr "No" "No" "No" "No" ... ## $ Drvr_EstSp: chr "11-15 mph" "0-5 mph" "21-25 mph" "46-50 mph" ... ## $ Drvr_Injur: chr "O: No Injury" "O: No Injury" "O: No Injury" "O: No Injury" ... ## $ Drvr_Race : chr "Black" "Black" "White" "White" ... ## $ Drvr_Sex : chr "Male" "Male" "Female" "Female" ... ## $ Drvr_VehTy: chr "Pickup" "Passenger Car" "Passenger Car" "Sport Utility" ... ## $ ExcsSpdInd: chr "No" "No" "No" "No" ... ## $ Hit_Run : chr "No" "No" "No" "No" ... ## $ Light_Cond: chr "Daylight" "Dark - Lighted Roadway" "Daylight" "Dark - Roadway Not Lighted" ... ## $ Locality : chr "Mixed (30% To 70% Developed)" "Urban (>70% Developed)" "Mixed (30% To 70% Developed)" "Urban (>70% Developed)" ... ## $ Num_Lanes : chr "2 lanes" "5 lanes" "2 lanes" "4 lanes" ... ## $ Num_Units : int 2 2 2 3 2 2 2 2 2 2 ... ## $ Rd_Charact: chr "Straight - Level" "Straight - Level" "Straight - Level" "Straight - Level" ... ## $ Rd_Class : chr "Local Street" "Local Street" "Local Street" "NC Route" ... ## $ Rd_Conditi: chr "Dry" "Dry" "Dry" "Dry" ... ## $ Rd_Config : chr "Two-Way, Not Divided" "Two-Way, Divided, Unprotected Median" "Two-Way, Not Divided" "Two-Way, Divided, Unprotected Median" ... ## $ Rd_Defects: chr "None" "None" "None" "None" ... ## $ Rd_Feature: chr "No Special Feature" "Four-Way Intersection" "Four-Way Intersection" "Four-Way Intersection" ... ## $ Rd_Surface: chr "Smooth Asphalt" "Smooth Asphalt" "Smooth Asphalt" "Smooth Asphalt" ... ## $ Region : chr "Piedmont" "Coastal" "Coastal" "Piedmont" ... ## $ Rural_Urba: chr "Urban" "Urban" "Rural" "Urban" ... ## $ Speed_Limi: chr "20 - 25 MPH" "40 - 45 MPH" "30 - 35 MPH" "40 - 45 MPH" ... ## $ Traff_Cntr: chr "No Control Present" "Stop And Go Signal" "Stop Sign" "Stop And Go Signal" ... ## $ Weather : chr "Clear" "Clear" "Clear" "Cloudy" ... ## $ Workzone_I: chr "No" "No" "No" "No" ... ## $ Location : chr "36.002743, -78.8785" "35.612984, -77.39265" "35.595676, -77.59074" "35.076767, -80.7728" ...
Using base R functions
Using the ggplot2 package \(\leftarrow\) our focus today
Using a variety of other packages like lattice, ggvis, etc.
ggplot2 package
A statistical graphic is a…
ggplot(data = bike, aes(x = Crash_Hour, y = Bike_Age)) + geom_point()
## Warning: Removed 130 rows containing missing values (geom_point).
ggplot(data = bike, aes(x = Crash_Hour, y = Bike_Age)) + geom_point(alpha = 0.5, color = "blue")
## Warning: Removed 130 rows containing missing values (geom_point).
ggplot(data = bike, aes(x = Crash_Hour, y = Bike_Age, color = AmbulanceR)) + geom_point(alpha = 0.5) + facet_grid(. ~ Bike_Sex)
ggplot(data = [dataframe], aes(x = [var_x], y = [var_y],
color = [var_for_color], fill = [var_for_fill],
shape = [var_for_shape])) +
geom_[some_geom] +
... # other options
ggplot(data = bike, aes(x = Bike_Age)) + geom_histogram(binwidth = 5)
ggplot(data = bike, aes(y = Bike_Age, x = Bike_Sex)) + geom_boxplot()
ggplot(data = bike, aes(x = Bike_Injur)) + geom_bar()
ggplot(data = bike, aes(x = Crash_Loc, fill = Bike_Injur)) + geom_bar()
ggplot(data = bike, aes(x = Crash_Loc, fill = Bike_Injur)) + geom_bar(position="fill")
ggplot2 resourcesVisit http://docs.ggplot2.org/current/ for documentation on the current version of the ggplot2 package. It's full of examples!
Refer to the ggplot2 cheatsheet.
Using base R functions
Using the dplyr package \(\leftarrow\) our focus today
Using a variety of other packages like plyr, tidyr, lubridate, etc.
dplyrThe dplyr package is based on the concepts of functions as verbs that manipulate data frames:
filter(): pick rows matching criteriaselect(): pick columns by namerename(): rename specific columnsarrange(): reorder rowsmutate(): add new variablestransmute(): create new data frame with variablessample_n() / sample_frac(): randomly sample rowssummarise(): reduce variables to valuesdplyr rulesfilter()filter()for crashes in Durham County
bike %>% filter(County == "Durham")
## Source: local data frame [253 x 54] ## ## FID OBJECTID AmbulanceR BikeAge_Gr Bike_Age Bike_Alc_D Bike_Dir ## (int) (int) (chr) (chr) (int) (chr) (chr) ## 1 18 19 No NA 6 No Not Applicable ## 2 53 54 Yes 50-59 52 No With Traffic ## 3 56 57 Yes 16-19 18 No NA ## 4 209 210 No 16-19 16 No Facing Traffic ## 5 228 229 Yes 40-49 40 No With Traffic ## 6 620 621 Yes 50-59 55 No With Traffic ## 7 667 668 Yes 60-69 61 No Not Applicable ## 8 458 459 Yes 60-69 62 No With Traffic ## 9 576 577 No 40-49 49 No With Traffic ## 10 618 619 No 20-24 23 No With Traffic ## .. ... ... ... ... ... ... ... ## Variables not shown: Bike_Injur (chr), Bike_Pos (chr), Bike_Race (chr), ## Bike_Sex (chr), City (chr), County (chr), CrashAlcoh (chr), CrashDay ## (chr), Crash_Date (chr), Crash_Grp (chr), Crash_Hour (int), Crash_Loc ## (chr), Crash_Mont (chr), Crash_Time (chr), Crash_Type (chr), Crash_Ty_1 ## (int), Crash_Year (int), Crsh_Sevri (chr), Developmen (chr), DrvrAge_Gr ## (chr), Drvr_Age (int), Drvr_Alc_D (chr), Drvr_EstSp (chr), Drvr_Injur ## (chr), Drvr_Race (chr), Drvr_Sex (chr), Drvr_VehTy (chr), ExcsSpdInd ## (chr), Hit_Run (chr), Light_Cond (chr), Locality (chr), Num_Lanes (chr), ## Num_Units (int), Rd_Charact (chr), Rd_Class (chr), Rd_Conditi (chr), ## Rd_Config (chr), Rd_Defects (chr), Rd_Feature (chr), Rd_Surface (chr), ## Region (chr), Rural_Urba (chr), Speed_Limi (chr), Traff_Cntr (chr), ## Weather (chr), Workzone_I (chr), Location (chr)
filter()for crashes in Durham County where biker was < 10 yrs old
bike %>% filter(County == "Durham", Bike_Age < 10)
## Source: local data frame [20 x 54] ## ## FID OBJECTID AmbulanceR BikeAge_Gr Bike_Age Bike_Alc_D Bike_Dir ## (int) (int) (chr) (chr) (int) (chr) (chr) ## 1 18 19 No NA 6 No Not Applicable ## 2 47 48 No 10-Jun 9 No Not Applicable ## 3 124 125 Yes 10-Jun 8 No With Traffic ## 4 531 532 Yes 10-Jun 7 No With Traffic ## 5 704 705 Yes 10-Jun 9 No Not Applicable ## 6 42 43 No 10-Jun 8 No With Traffic ## 7 392 393 Yes 0-5 2 No Not Applicable ## 8 941 942 No 10-Jun 9 No With Traffic ## 9 436 437 Yes 10-Jun 6 No Not Applicable ## 10 160 161 Yes 10-Jun 7 No With Traffic ## 11 273 274 Yes 10-Jun 7 No Facing Traffic ## 12 78 79 Yes 10-Jun 7 No With Traffic ## 13 422 423 No 10-Jun 9 No Not Applicable ## 14 570 571 No NA 0 Missing Not Applicable ## 15 683 684 Yes 10-Jun 8 No Not Applicable ## 16 62 63 Yes 10-Jun 7 No With Traffic ## 17 248 249 No 0-5 4 No Not Applicable ## 18 306 307 Yes 10-Jun 8 No With Traffic ## 19 231 232 Yes 10-Jun 8 No With Traffic ## 20 361 362 Yes 10-Jun 9 No With Traffic ## Variables not shown: Bike_Injur (chr), Bike_Pos (chr), Bike_Race (chr), ## Bike_Sex (chr), City (chr), County (chr), CrashAlcoh (chr), CrashDay ## (chr), Crash_Date (chr), Crash_Grp (chr), Crash_Hour (int), Crash_Loc ## (chr), Crash_Mont (chr), Crash_Time (chr), Crash_Type (chr), Crash_Ty_1 ## (int), Crash_Year (int), Crsh_Sevri (chr), Developmen (chr), DrvrAge_Gr ## (chr), Drvr_Age (int), Drvr_Alc_D (chr), Drvr_EstSp (chr), Drvr_Injur ## (chr), Drvr_Race (chr), Drvr_Sex (chr), Drvr_VehTy (chr), ExcsSpdInd ## (chr), Hit_Run (chr), Light_Cond (chr), Locality (chr), Num_Lanes (chr), ## Num_Units (int), Rd_Charact (chr), Rd_Class (chr), Rd_Conditi (chr), ## Rd_Config (chr), Rd_Defects (chr), Rd_Feature (chr), Rd_Surface (chr), ## Region (chr), Rural_Urba (chr), Speed_Limi (chr), Traff_Cntr (chr), ## Weather (chr), Workzone_I (chr), Location (chr)
| operator | definition |
|---|---|
< |
less than |
<= |
less than or equal to |
> |
greater than |
>= |
greater than or equal to |
== |
exactly equal to |
!= |
not equal to |
x | y |
x OR y |
x & y |
x AND y |
| operator | definition |
|---|---|
is.na(x) |
test if x is NA |
!is.na(x) |
test if x is not NA |
x %in% y |
test if x is in y |
!(x %in% y) |
test if x is not in y |
!x |
not x |
What in the world does a BikeAge_gr of 10-Jun or 15-Nov mean?
bike %>% group_by(BikeAge_Gr) %>% summarise(crash_count = n())
## Source: local data frame [13 x 2] ## ## BikeAge_Gr crash_count ## (chr) (int) ## 1 0-5 60 ## 2 10-Jun 421 ## 3 15-Nov 747 ## 4 16-19 605 ## 5 20-24 680 ## 6 25-29 430 ## 7 30-39 658 ## 8 40-49 920 ## 9 50-59 739 ## 10 60-69 274 ## 11 70 12 ## 12 70+ 58 ## 13 NA 112
10-Jun should be 6-1015-Nov should be 11-15stringrstringrinstall.packages("stringr")
library(stringr)
str_replace() and add new variables with mutate()BikeAge_Gr variable: 10-Jun should be 6-10 and 15-Nov should be 11-15bike <- bike %>% mutate(BikeAge_Gr = str_replace(BikeAge_Gr, "10-Jun", "6-10")) %>% mutate(BikeAge_Gr = str_replace(BikeAge_Gr, "15-Nov", "11-15"))
Always check your changes and confirm code did what you wanted it to do
bike %>% group_by(BikeAge_Gr) %>% summarise(count = n())
## Source: local data frame [13 x 2] ## ## BikeAge_Gr count ## (chr) (int) ## 1 0-5 60 ## 2 11-15 747 ## 3 16-19 605 ## 4 20-24 680 ## 5 25-29 430 ## 6 30-39 658 ## 7 40-49 920 ## 8 50-59 739 ## 9 6-10 421 ## 10 60-69 274 ## 11 70 12 ## 12 70+ 58 ## 13 NA 112
slice() for certain row numbersFirst five
bike %>% slice(1:5)
## Source: local data frame [5 x 54] ## ## FID OBJECTID AmbulanceR BikeAge_Gr Bike_Age Bike_Alc_D Bike_Dir ## (int) (int) (chr) (chr) (int) (chr) (chr) ## 1 18 19 No NA 6 No Not Applicable ## 2 29 30 Yes 50-59 51 No With Traffic ## 3 33 34 No NA 10 No With Traffic ## 4 35 36 Yes 16-19 17 No NA ## 5 49 50 No NA 6 No Facing Traffic ## Variables not shown: Bike_Injur (chr), Bike_Pos (chr), Bike_Race (chr), ## Bike_Sex (chr), City (chr), County (chr), CrashAlcoh (chr), CrashDay ## (chr), Crash_Date (chr), Crash_Grp (chr), Crash_Hour (int), Crash_Loc ## (chr), Crash_Mont (chr), Crash_Time (chr), Crash_Type (chr), Crash_Ty_1 ## (int), Crash_Year (int), Crsh_Sevri (chr), Developmen (chr), DrvrAge_Gr ## (chr), Drvr_Age (int), Drvr_Alc_D (chr), Drvr_EstSp (chr), Drvr_Injur ## (chr), Drvr_Race (chr), Drvr_Sex (chr), Drvr_VehTy (chr), ExcsSpdInd ## (chr), Hit_Run (chr), Light_Cond (chr), Locality (chr), Num_Lanes (chr), ## Num_Units (int), Rd_Charact (chr), Rd_Class (chr), Rd_Conditi (chr), ## Rd_Config (chr), Rd_Defects (chr), Rd_Feature (chr), Rd_Surface (chr), ## Region (chr), Rural_Urba (chr), Speed_Limi (chr), Traff_Cntr (chr), ## Weather (chr), Workzone_I (chr), Location (chr)
slice() for certain row numbersLast five
last_row <- nrow(bike) bike %>% slice((last_row-4):last_row)
## Source: local data frame [5 x 54] ## ## FID OBJECTID AmbulanceR BikeAge_Gr Bike_Age Bike_Alc_D Bike_Dir ## (int) (int) (chr) (chr) (int) (chr) (chr) ## 1 460 461 Yes 6-10 7 No Not Applicable ## 2 474 475 Yes 50-59 50 No With Traffic ## 3 479 480 Yes 16-19 16 No Not Applicable ## 4 487 488 No 40-49 47 Yes With Traffic ## 5 488 489 Yes 30-39 35 No Facing Traffic ## Variables not shown: Bike_Injur (chr), Bike_Pos (chr), Bike_Race (chr), ## Bike_Sex (chr), City (chr), County (chr), CrashAlcoh (chr), CrashDay ## (chr), Crash_Date (chr), Crash_Grp (chr), Crash_Hour (int), Crash_Loc ## (chr), Crash_Mont (chr), Crash_Time (chr), Crash_Type (chr), Crash_Ty_1 ## (int), Crash_Year (int), Crsh_Sevri (chr), Developmen (chr), DrvrAge_Gr ## (chr), Drvr_Age (int), Drvr_Alc_D (chr), Drvr_EstSp (chr), Drvr_Injur ## (chr), Drvr_Race (chr), Drvr_Sex (chr), Drvr_VehTy (chr), ExcsSpdInd ## (chr), Hit_Run (chr), Light_Cond (chr), Locality (chr), Num_Lanes (chr), ## Num_Units (int), Rd_Charact (chr), Rd_Class (chr), Rd_Conditi (chr), ## Rd_Config (chr), Rd_Defects (chr), Rd_Feature (chr), Rd_Surface (chr), ## Region (chr), Rural_Urba (chr), Speed_Limi (chr), Traff_Cntr (chr), ## Weather (chr), Workzone_I (chr), Location (chr)
select() to keep only the variables you mentionbike %>% select(Crash_Loc, Hit_Run) %>% table()
## Hit_Run ## Crash_Loc No Yes ## Intersection 2223 275 ## Intersection-Related 252 42 ## Location 3 7 ## Non-Intersection 2213 462 ## Non-Roadway 205 30
select()to exclude variablesbike %>% select(-OBJECTID)
## Source: local data frame [5,716 x 53] ## ## FID AmbulanceR BikeAge_Gr Bike_Age Bike_Alc_D Bike_Dir ## (int) (chr) (chr) (int) (chr) (chr) ## 1 18 No NA 6 No Not Applicable ## 2 29 Yes 50-59 51 No With Traffic ## 3 33 No NA 10 No With Traffic ## 4 35 Yes 16-19 17 No NA ## 5 49 No NA 6 No Facing Traffic ## 6 53 Yes 50-59 52 No With Traffic ## 7 56 Yes 16-19 18 No NA ## 8 60 No 40-49 40 No Facing Traffic ## 9 63 Yes 6-10 6 No Facing Traffic ## 10 66 Yes 6-10 7 No NA ## .. ... ... ... ... ... ... ## Variables not shown: Bike_Injur (chr), Bike_Pos (chr), Bike_Race (chr), ## Bike_Sex (chr), City (chr), County (chr), CrashAlcoh (chr), CrashDay ## (chr), Crash_Date (chr), Crash_Grp (chr), Crash_Hour (int), Crash_Loc ## (chr), Crash_Mont (chr), Crash_Time (chr), Crash_Type (chr), Crash_Ty_1 ## (int), Crash_Year (int), Crsh_Sevri (chr), Developmen (chr), DrvrAge_Gr ## (chr), Drvr_Age (int), Drvr_Alc_D (chr), Drvr_EstSp (chr), Drvr_Injur ## (chr), Drvr_Race (chr), Drvr_Sex (chr), Drvr_VehTy (chr), ExcsSpdInd ## (chr), Hit_Run (chr), Light_Cond (chr), Locality (chr), Num_Lanes (chr), ## Num_Units (int), Rd_Charact (chr), Rd_Class (chr), Rd_Conditi (chr), ## Rd_Config (chr), Rd_Defects (chr), Rd_Feature (chr), Rd_Surface (chr), ## Region (chr), Rural_Urba (chr), Speed_Limi (chr), Traff_Cntr (chr), ## Weather (chr), Workzone_I (chr), Location (chr)
rename() specific columnsCorrect typos and rename to make variable names shorter and/or more informative
names(bike)
## [1] "FID" "OBJECTID" "AmbulanceR" "BikeAge_Gr" "Bike_Age" ## [6] "Bike_Alc_D" "Bike_Dir" "Bike_Injur" "Bike_Pos" "Bike_Race" ## [11] "Bike_Sex" "City" "County" "CrashAlcoh" "CrashDay" ## [16] "Crash_Date" "Crash_Grp" "Crash_Hour" "Crash_Loc" "Crash_Mont" ## [21] "Crash_Time" "Crash_Type" "Crash_Ty_1" "Crash_Year" "Crsh_Sevri" ## [26] "Developmen" "DrvrAge_Gr" "Drvr_Age" "Drvr_Alc_D" "Drvr_EstSp" ## [31] "Drvr_Injur" "Drvr_Race" "Drvr_Sex" "Drvr_VehTy" "ExcsSpdInd" ## [36] "Hit_Run" "Light_Cond" "Locality" "Num_Lanes" "Num_Units" ## [41] "Rd_Charact" "Rd_Class" "Rd_Conditi" "Rd_Config" "Rd_Defects" ## [46] "Rd_Feature" "Rd_Surface" "Region" "Rural_Urba" "Speed_Limi" ## [51] "Traff_Cntr" "Weather" "Workzone_I" "Location"
Speed_Limi to Speed_Limit:bike <- bike %>% rename(Speed_Limit = Speed_Limi)
Always check your changes and confirm code did what you wanted it to do
names(bike)
## [1] "FID" "OBJECTID" "AmbulanceR" "BikeAge_Gr" "Bike_Age" ## [6] "Bike_Alc_D" "Bike_Dir" "Bike_Injur" "Bike_Pos" "Bike_Race" ## [11] "Bike_Sex" "City" "County" "CrashAlcoh" "CrashDay" ## [16] "Crash_Date" "Crash_Grp" "Crash_Hour" "Crash_Loc" "Crash_Mont" ## [21] "Crash_Time" "Crash_Type" "Crash_Ty_1" "Crash_Year" "Crsh_Sevri" ## [26] "Developmen" "DrvrAge_Gr" "Drvr_Age" "Drvr_Alc_D" "Drvr_EstSp" ## [31] "Drvr_Injur" "Drvr_Race" "Drvr_Sex" "Drvr_VehTy" "ExcsSpdInd" ## [36] "Hit_Run" "Light_Cond" "Locality" "Num_Lanes" "Num_Units" ## [41] "Rd_Charact" "Rd_Class" "Rd_Conditi" "Rd_Config" "Rd_Defects" ## [46] "Rd_Feature" "Rd_Surface" "Region" "Rural_Urba" "Speed_Limit" ## [51] "Traff_Cntr" "Weather" "Workzone_I" "Location"
summarise() in a new data framebike %>% group_by(BikeAge_Gr) %>% summarise(crash_count = n()) %>% arrange(crash_count)
## Source: local data frame [13 x 2] ## ## BikeAge_Gr crash_count ## (chr) (int) ## 1 70 12 ## 2 70+ 58 ## 3 0-5 60 ## 4 NA 112 ## 5 60-69 274 ## 6 6-10 421 ## 7 25-29 430 ## 8 16-19 605 ## 9 30-39 658 ## 10 20-24 680 ## 11 50-59 739 ## 12 11-15 747 ## 13 40-49 920
arrange() to order rowsbike %>% group_by(BikeAge_Gr) %>% summarise(crash_count = n()) %>% arrange(desc(crash_count))
## Source: local data frame [13 x 2] ## ## BikeAge_Gr crash_count ## (chr) (int) ## 1 40-49 920 ## 2 11-15 747 ## 3 50-59 739 ## 4 20-24 680 ## 5 30-39 658 ## 6 16-19 605 ## 7 25-29 430 ## 8 6-10 421 ## 9 60-69 274 ## 10 NA 112 ## 11 0-5 60 ## 12 70+ 58 ## 13 70 12
sample_n() or sample_frac()sample_n(): randomly sample 5 observationsbike_n5 <- bike %>% sample_n(5, replace = FALSE) dim(bike_n5)
## [1] 5 54
sample_frac(): randomly sample 20% of observationsbike_perc20 <-bike %>% sample_frac(0.2, replace = FALSE) dim(bike_perc20)
## [1] 1143 54
dplyr resourcesVisit https://cran.r-project.org/web/packages/dplyr/vignettes/introduction.html for the package vignette.
Refer to the dplyr cheatsheet.
For when not working with dplyr or ggplot2
Refer to a variable in a dataset as bike$Crash_Loc
Access any element in a dataframe using square brackets
bike[1,5] # row 1, column 5
## Source: local data frame [1 x 1] ## ## Bike_Age ## (int) ## 1 6
- For all observations in row 1: `bike[1, ]` - For all observations in column 5: `bike[, 5]`
Create a new dataframe that doesn't include observations where Bike_Injur = Injury since it's not clear what this means.
This new dataframe also should include observations in Durham, and where the biker is a teenager (13 to 19 years, inclusive).
Create a visualization that will help answer whether facing traffic or riding with traffic (Bike_Dir) is more dangerous in bike crashes for teenagers in Durham, based on the Bike_Injur variable.