Main Sample
For the summary statistics of continuous variables, we generate the statistics using the sample of
consent
. This sample includes 18529 participants who consented to the study.The table belows show the number of missing values, proportion of missing values (out of the sample of 18529 participants who consented to the study), mean, standard deviation, standard error, min, max, and quintile values for each variables in the sample.
We also reports the extreme values of these variables by showing the 90th, 95th, 98th, 99th, and 100th percentile.
We noticed very large outliers of
duration_intro
,duration_match
,duration_affirm
, andduration_reveal
variables (in minutes).Noticed that there are 18 people missing for the
source_coded
variable. These participants retried the charity matching quiz. In the process of manually recording data for these participants, we did not capture the source of entry. WE ARE WORKING ON THIS, which should be an easy task.
df_wide$manipulation_value_coded <- as.numeric(df_wide$manipulation_value_coded)
continous_var <- c("duration_intro", "duration_match", "duration_affirm", "duration_reveal", "duration_treatment", "time_since_first_start", "important_smart_coded", "important_responsive_coded","important_forward_looking_coded", "source_coded", "manipulation_value_coded")
summary_stats_table_continous(
df_wide,
variables = continous_var,
group = NULL,
filename = "continuous",
caption = "Summary Statistics for Continuous Variables",
print_html = TRUE
)
Variable | Number_Missing | Proportion_Missing | Mean | SD | SE | Min | Max | Decile_10 | Decile_20 | Decile_30 | Decile_40 | Decile_50 | Decile_60 | Decile_70 | Decile_80 | Decile_90 | Decile_95 | Decile_98 | Decile_99 | Decile_100 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
duration_intro | 2572 | 0.161 | 127.725 | 1744.339 | 13.809 | 0.683 | 81298.02 | 0.933 | 1.017 | 1.067 | 1.150 | 1.233 | 1.350 | 1.500 | 1.783 | 2.483 | 4.133 | 74.737 | 1544.770 | 81298.02 |
duration_match | 2045 | 0.124 | 30.518 | 816.431 | 6.359 | 0.400 | 44308.42 | 0.733 | 0.833 | 0.917 | 1.000 | 1.100 | 1.217 | 1.350 | 1.567 | 2.017 | 2.583 | 4.017 | 8.253 | 44308.42 |
duration_affirm | 2634 | 0.166 | 11.028 | 407.984 | 3.236 | 0.383 | 38597.92 | 0.533 | 0.567 | 0.617 | 0.667 | 0.717 | 0.783 | 0.883 | 1.033 | 1.333 | 1.717 | 2.517 | 4.635 | 38597.92 |
duration_reveal | 7814 | 0.729 | 77.690 | 1896.311 | 18.319 | 0.233 | 120738.32 | 0.650 | 0.717 | 0.767 | 0.817 | 0.883 | 0.967 | 1.083 | 1.250 | 1.667 | 2.367 | 7.967 | 82.480 | 120738.32 |
duration_treatment | 13123 | 2.427 | 95.262 | 935.402 | 12.722 | 0.067 | 32165.07 | 1.233 | 1.700 | 2.017 | 2.350 | 2.800 | 3.417 | 4.450 | 7.600 | 24.692 | 135.896 | 1382.812 | 1599.863 | 32165.07 |
time_since_first_start | 2027 | 0.123 | 22.630 | 9.105 | 0.071 | 0.000 | 33.00 | 8.000 | 14.000 | 19.000 | 23.000 | 26.000 | 28.000 | 29.000 | 31.000 | 32.000 | 33.000 | 33.000 | 33.000 | 33.00 |
important_smart_coded | 2303 | 0.142 | 2.759 | 0.534 | 0.004 | 1.000 | 3.00 | 2.000 | 3.000 | 3.000 | 3.000 | 3.000 | 3.000 | 3.000 | 3.000 | 3.000 | 3.000 | 3.000 | 3.000 | 3.00 |
important_responsive_coded | 2471 | 0.154 | 2.614 | 0.590 | 0.005 | 1.000 | 3.00 | 2.000 | 2.000 | 2.000 | 3.000 | 3.000 | 3.000 | 3.000 | 3.000 | 3.000 | 3.000 | 3.000 | 3.000 | 3.00 |
important_forward_looking_coded | 2627 | 0.165 | 2.685 | 0.527 | 0.004 | 1.000 | 3.00 | 2.000 | 2.000 | 3.000 | 3.000 | 3.000 | 3.000 | 3.000 | 3.000 | 3.000 | 3.000 | 3.000 | 3.000 | 3.00 |
source_coded | 18 | 0.001 | 0.983 | 0.128 | 0.001 | 0.000 | 1.00 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.00 |
manipulation_value_coded | 12123 | 1.892 | 4.701 | 0.717 | 0.009 | 1.000 | 5.00 | 4.000 | 4.000 | 5.000 | 5.000 | 5.000 | 5.000 | 5.000 | 5.000 | 5.000 | 5.000 | 5.000 | 5.000 | 5.00 |