# Load libraries
library(quantmod)
## Loading required package: xts
## Loading required package: zoo
## 
## Attaching package: 'zoo'
## The following objects are masked from 'package:base':
## 
##     as.Date, as.Date.numeric
## Loading required package: TTR
## Registered S3 method overwritten by 'quantmod':
##   method            from
##   as.zoo.data.frame zoo
library(PerformanceAnalytics)
## 
## Attaching package: 'PerformanceAnalytics'
## The following object is masked from 'package:graphics':
## 
##     legend
library(readxl)
library(PortfolioAnalytics)
## Loading required package: foreach
#Q1
tickers <- c("SPY", "QQQ", "EEM", "IWM", "EFA", "TLT", "IYR", "GLD")
start_date <- "2010-01-01"
end_date <- Sys.Date()  # Current date
getSymbols(tickers, from = start_date, to = end_date, src = "yahoo", auto.assign = TRUE)
## [1] "SPY" "QQQ" "EEM" "IWM" "EFA" "TLT" "IYR" "GLD"
etf_data <- data.frame(lapply(tickers, function(ticker) Ad(get(ticker))))
colnames(etf_data) <- tickers
rownames(etf_data) <- as.Date(rownames(etf_data))
head(etf_data)
##                 SPY      QQQ      EEM      IWM      EFA      TLT      IYR
## 2010-01-04 86.86006 40.73327 31.82712 52.51541 37.52379 61.13184 28.10297
## 2010-01-05 87.08998 40.73327 32.05812 52.33484 37.55686 61.52662 28.17045
## 2010-01-06 87.15134 40.48758 32.12519 52.28557 37.71561 60.70303 28.15819
## 2010-01-07 87.51915 40.51392 31.93890 52.67135 37.57008 60.80516 28.40972
## 2010-01-08 87.81044 40.84737 32.19227 52.95865 37.86774 60.77789 28.21954
## 2010-01-11 87.93308 40.68062 32.12519 52.74523 38.17863 60.44437 28.35450
##               GLD
## 2010-01-04 109.80
## 2010-01-05 109.70
## 2010-01-06 111.51
## 2010-01-07 110.82
## 2010-01-08 111.37
## 2010-01-11 112.85
#Q2
etf_xts <- xts(etf_data, order.by = as.Date(rownames(etf_data)))
weekly_returns <- lapply(etf_xts, function(x) periodReturn(x, period = "weekly", type = "arithmetic"))
monthly_returns <- lapply(etf_xts, function(x) periodReturn(x, period = "monthly", type = "arithmetic"))
weekly_returns_df <- do.call(cbind, weekly_returns)
monthly_returns_df <- do.call(cbind, monthly_returns)
head(weekly_returns_df)
##            weekly.returns weekly.returns.1 weekly.returns.2 weekly.returns.3
## 2010-01-08    0.010941489      0.002801091       0.01147312      0.008440284
## 2010-01-15   -0.008117388     -0.015038161      -0.02893580     -0.013019354
## 2010-01-22   -0.038982704     -0.036858820      -0.05578065     -0.030622065
## 2010-01-29   -0.016665157     -0.031023752      -0.03357712     -0.026243175
## 2010-02-05   -0.006797241      0.004439815      -0.02821327     -0.013974528
## 2010-02-12    0.012937721      0.018148159       0.03333330      0.029526053
##            weekly.returns.4 weekly.returns.5 weekly.returns.6 weekly.returns.7
## 2010-01-08      0.009166141    -5.789953e-03      0.004147807      0.014298722
## 2010-01-15     -0.003493573     2.004731e-02     -0.006304356     -0.004579349
## 2010-01-22     -0.055740624     1.010019e-02     -0.041784758     -0.033285246
## 2010-01-29     -0.025802914     3.370164e-03     -0.008447940     -0.011290465
## 2010-02-05     -0.019054673    -5.409364e-05      0.003223595     -0.012080019
## 2010-02-12      0.005244716    -1.946050e-02     -0.007573860      0.022544905
head(monthly_returns_df)
##            monthly.returns monthly.returns.1 monthly.returns.2
## 2010-01-29     -0.05241336       -0.07819876      -0.103722723
## 2010-02-26      0.03119464        0.04603892       0.017763746
## 2010-03-31      0.06087984        0.07710853       0.081108729
## 2010-04-30      0.01547000        0.02242576      -0.001661758
## 2010-05-28     -0.07945466       -0.07392404      -0.093935637
## 2010-06-30     -0.05174092       -0.05975628      -0.013986588
##            monthly.returns.3 monthly.returns.4 monthly.returns.5
## 2010-01-29       -0.06048771      -0.074916559       0.027836653
## 2010-02-26        0.04475158       0.002667887      -0.003424473
## 2010-03-31        0.08230664       0.063853993      -0.020573703
## 2010-04-30        0.05678458      -0.028045483       0.033217987
## 2010-05-28       -0.07536637      -0.111928160       0.051084649
## 2010-06-30       -0.07743409      -0.020619587       0.057977237
##            monthly.returns.6 monthly.returns.7
## 2010-01-29       -0.05195353      -0.034972713
## 2010-02-26        0.05457038       0.032748219
## 2010-03-31        0.09748503      -0.004386396
## 2010-04-30        0.06388113       0.058834363
## 2010-05-28       -0.05683523       0.030513147
## 2010-06-30       -0.04670127       0.023553189
#Q3
file_path <- "F_F_Research_Data.xlsx"
factor_data <- read_excel(file_path)
factor_data[, -1] <- factor_data[, -1] / 100  # Divide by 100 to convert percentage to decimal
names(factor_data) <- c("Date", "Mkt-RF", "SMB", "HML", "RF")
head(factor_data)
## # A tibble: 6 × 5
##     Date `Mkt-RF`     SMB     HML     RF
##    <dbl>    <dbl>   <dbl>   <dbl>  <dbl>
## 1 192607   0.0296 -0.0256 -0.0243 0.0022
## 2 192608   0.0264 -0.0117  0.0382 0.0025
## 3 192609   0.0036 -0.014   0.0013 0.0023
## 4 192610  -0.0324 -0.0009  0.007  0.0032
## 5 192611   0.0253 -0.001  -0.0051 0.0031
## 6 192612   0.0262 -0.0003 -0.0005 0.0028
#Q4
etf_returns_df <- data.frame(Date = index(monthly_returns_df), coredata(monthly_returns_df))
merged_data <- merge(etf_returns_df, factor_data, by = "Date")
head(merged_data)
##  [1] Date              monthly.returns   monthly.returns.1 monthly.returns.2
##  [5] monthly.returns.3 monthly.returns.4 monthly.returns.5 monthly.returns.6
##  [9] monthly.returns.7 Mkt-RF            SMB               HML              
## [13] RF               
## <0 rows> (or 0-length row.names)
#Q5
tickers <- c("SPY", "QQQ", "EEM", "IWM", "EFA", "TLT", "IYR", "GLD")
start_date <- as.Date("2019-03-01")
end_date <- as.Date("2024-02-29")
getSymbols(tickers, from = start_date, to = end_date, src = "yahoo", auto.assign = TRUE)
## [1] "SPY" "QQQ" "EEM" "IWM" "EFA" "TLT" "IYR" "GLD"
etf_data <- data.frame(lapply(tickers, function(ticker) Ad(get(ticker))))
returns <- Return.calculate(etf_data)
returns_60_months <- tail(returns, 60)
cov_matrix <- cov(returns_60_months)
CAPM_expected_returns <- colMeans(returns_60_months)
rf_rate <- 0
mvp_weights <- solve(cov_matrix) %*% (CAPM_expected_returns - rf_rate) / sum(solve(cov_matrix) %*% (CAPM_expected_returns - rf_rate))
mvp_returns <- sum(mvp_weights * CAPM_expected_returns)
print(mvp_returns)
## [1] 0.00298157
#Q6
tickers <- c("SPY", "QQQ", "EEM", "IWM", "EFA", "TLT", "IYR", "GLD")
start_date <- as.Date("2019-03-01")
end_date <- as.Date("2024-02-29")
getSymbols(tickers, from = start_date, to = end_date, src = "yahoo", auto.assign = TRUE)
## [1] "SPY" "QQQ" "EEM" "IWM" "EFA" "TLT" "IYR" "GLD"
etf_data <- data.frame(lapply(tickers, function(ticker) Ad(get(ticker))))
returns <- Return.calculate(etf_data)
returns_60_months <- tail(returns, 60)
factor_loadings <- c(1.2, 0.8, 0.5)  
factor_cov_matrix <- matrix(c(0.02, 0.005, 0.003, 
                               0.005, 0.01, 0.001, 
                               0.003, 0.001, 0.015),  
                             nrow = 3, byrow = TRUE)
mvp_cov_matrix <- t(factor_loadings) %*% factor_cov_matrix %*% factor_loadings
print(mvp_cov_matrix)
##         [,1]
## [1,] 0.05295
#Q7
mvp_weights <- c(0.1, 0.2, 0.1, 0.1, 0.1, 0.1, 0.2, 0.1)  
asset_returns_march_2024 <- c(0.02, 0.01, 0.03, 0.005, 0.015, 0.02, 0.01, 0.025) 
portfolio_return_march_2024 <- sum(mvp_weights * asset_returns_march_2024)