df <- read.csv("who.csv", header=TRUE)
head(df)
## Country LifeExp InfantSurvival Under5Survival TBFree PropMD
## 1 Afghanistan 42 0.835 0.743 0.99769 0.000228841
## 2 Albania 71 0.985 0.983 0.99974 0.001143127
## 3 Algeria 71 0.967 0.962 0.99944 0.001060478
## 4 Andorra 82 0.997 0.996 0.99983 0.003297297
## 5 Angola 41 0.846 0.740 0.99656 0.000070400
## 6 Antigua and Barbuda 73 0.990 0.989 0.99991 0.000142857
## PropRN PersExp GovtExp TotExp
## 1 0.000572294 20 92 112
## 2 0.004614439 169 3128 3297
## 3 0.002091362 108 5184 5292
## 4 0.003500000 2589 169725 172314
## 5 0.001146162 36 1620 1656
## 6 0.002773810 503 12543 13046
LifeExp ~ TotExp
plot(df$TotExp, df$LifeExp, xlab="TotExp", ylab="LifeExp")
df.lm <- lm(LifeExp ~ TotExp, data=df)
summary(df.lm)
##
## Call:
## lm(formula = LifeExp ~ TotExp, data = df)
##
## Residuals:
## Min 1Q Median 3Q Max
## -24.764 -4.778 3.154 7.116 13.292
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 6.475e+01 7.535e-01 85.933 < 2e-16 ***
## TotExp 6.297e-05 7.795e-06 8.079 7.71e-14 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 9.371 on 188 degrees of freedom
## Multiple R-squared: 0.2577, Adjusted R-squared: 0.2537
## F-statistic: 65.26 on 1 and 188 DF, p-value: 7.714e-14
plot(LifeExp ~ TotExp, data=df)
abline(df.lm)
We can see that the relationship between LifeExp and TotExp is not
linear.
par(mfrow=c(2,2))
plot(df.lm)
The assumptions for linear regression are not met. The relationship between LifeExp and TotExp is not linear, the distribution of the residuals is not normal and don’t have equal variance for each value of TotExp. The residuals are distributed in some pattern, which means that there is likely another model that would fit the relationship better.
Raise life expectancy to the 4.6 power (i.e., LifeExp^4.6). Raise total expenditures to the 0.06 power (nearly a log transform, TotExp^.06).
df1 <- df
df1$`LifeExp^4.6` <- df1$LifeExp^4.6
df1$`TotExp^0.06` <- df1$TotExp^0.06
plot(df1$`LifeExp^4.6`, df1$`TotExp^0.06`, xlab="TotExp^0.06", ylab="LifeExp^4.6")
df1.lm <- lm(`LifeExp^4.6` ~ `TotExp^0.06`, data=df1)
summary(df1.lm)
##
## Call:
## lm(formula = `LifeExp^4.6` ~ `TotExp^0.06`, data = df1)
##
## Residuals:
## Min 1Q Median 3Q Max
## -308616089 -53978977 13697187 59139231 211951764
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -736527910 46817945 -15.73 <2e-16 ***
## `TotExp^0.06` 620060216 27518940 22.53 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 90490000 on 188 degrees of freedom
## Multiple R-squared: 0.7298, Adjusted R-squared: 0.7283
## F-statistic: 507.7 on 1 and 188 DF, p-value: < 2.2e-16
par(mfrow=c(2,2))
plot(df1.lm)
This model looks better. The relationship between the transformed variables is more linear than the variables in the previous model. The residuals look more random.
Forecast life expectancy when TotExp^.06 =1.5. Then forecast life expectancy when TotExp^.06=2.5.
pred1 <- predict(df1.lm, newdata=list(`TotExp^0.06`=1.5))
pred1
## 1
## 193562414
pred2 <- predict(df1.lm, newdata=list(`TotExp^0.06`=2.5))
pred2
## 1
## 813622630
LifeExp = b0+b1 x PropMd + b2 x TotExp +b3 x PropMD x TotExp
df.lm1 <- lm(LifeExp ~ PropMD + TotExp + PropMD*TotExp, data=df)
summary(df.lm1)
##
## Call:
## lm(formula = LifeExp ~ PropMD + TotExp + PropMD * TotExp, data = df)
##
## Residuals:
## Min 1Q Median 3Q Max
## -27.320 -4.132 2.098 6.540 13.074
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 6.277e+01 7.956e-01 78.899 < 2e-16 ***
## PropMD 1.497e+03 2.788e+02 5.371 2.32e-07 ***
## TotExp 7.233e-05 8.982e-06 8.053 9.39e-14 ***
## PropMD:TotExp -6.026e-03 1.472e-03 -4.093 6.35e-05 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 8.765 on 186 degrees of freedom
## Multiple R-squared: 0.3574, Adjusted R-squared: 0.3471
## F-statistic: 34.49 on 3 and 186 DF, p-value: < 2.2e-16
Build the following multiple regression model and interpret the F Statistics, R^2, standard error, and p-values. How good is the model?
par(mfrow=c(2,2))
plot(df.lm1)
## Warning in sqrt(crit * p * (1 - hh)/hh): NaNs produced
## Warning in sqrt(crit * p * (1 - hh)/hh): NaNs produced
The model is not good. The residuals have a clear pattern. The R-squared is small.
Forecast LifeExp when PropMD=.03 and TotExp = 14. Does this forecast seem realistic? Why or why not?
pred3 <- predict(df.lm1, newdata=list(PropMD=1.5, TotExp=14))
pred3
## 1
## 2308.888
This forecast does not seem realistic for the context. This number is supposed to be within the range of a human’s life expectancy.