df <- read.csv("who.csv", header=TRUE)
head(df)
##               Country LifeExp InfantSurvival Under5Survival  TBFree      PropMD
## 1         Afghanistan      42          0.835          0.743 0.99769 0.000228841
## 2             Albania      71          0.985          0.983 0.99974 0.001143127
## 3             Algeria      71          0.967          0.962 0.99944 0.001060478
## 4             Andorra      82          0.997          0.996 0.99983 0.003297297
## 5              Angola      41          0.846          0.740 0.99656 0.000070400
## 6 Antigua and Barbuda      73          0.990          0.989 0.99991 0.000142857
##        PropRN PersExp GovtExp TotExp
## 1 0.000572294      20      92    112
## 2 0.004614439     169    3128   3297
## 3 0.002091362     108    5184   5292
## 4 0.003500000    2589  169725 172314
## 5 0.001146162      36    1620   1656
## 6 0.002773810     503   12543  13046

Simple linear regression

LifeExp ~ TotExp

plot(df$TotExp, df$LifeExp, xlab="TotExp", ylab="LifeExp")

df.lm <- lm(LifeExp ~ TotExp, data=df)
summary(df.lm)
## 
## Call:
## lm(formula = LifeExp ~ TotExp, data = df)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -24.764  -4.778   3.154   7.116  13.292 
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)    
## (Intercept) 6.475e+01  7.535e-01  85.933  < 2e-16 ***
## TotExp      6.297e-05  7.795e-06   8.079 7.71e-14 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 9.371 on 188 degrees of freedom
## Multiple R-squared:  0.2577, Adjusted R-squared:  0.2537 
## F-statistic: 65.26 on 1 and 188 DF,  p-value: 7.714e-14
plot(LifeExp ~ TotExp, data=df)
abline(df.lm)

We can see that the relationship between LifeExp and TotExp is not linear.

par(mfrow=c(2,2))
plot(df.lm)

The assumptions for linear regression are not met. The relationship between LifeExp and TotExp is not linear, the distribution of the residuals is not normal and don’t have equal variance for each value of TotExp. The residuals are distributed in some pattern, which means that there is likely another model that would fit the relationship better.

Raise life expectancy to the 4.6 power (i.e., LifeExp^4.6). Raise total expenditures to the 0.06 power (nearly a log transform, TotExp^.06).

df1 <- df
df1$`LifeExp^4.6` <- df1$LifeExp^4.6
df1$`TotExp^0.06` <- df1$TotExp^0.06
plot(df1$`LifeExp^4.6`, df1$`TotExp^0.06`, xlab="TotExp^0.06", ylab="LifeExp^4.6")

df1.lm <- lm(`LifeExp^4.6` ~ `TotExp^0.06`, data=df1)
summary(df1.lm)
## 
## Call:
## lm(formula = `LifeExp^4.6` ~ `TotExp^0.06`, data = df1)
## 
## Residuals:
##        Min         1Q     Median         3Q        Max 
## -308616089  -53978977   13697187   59139231  211951764 
## 
## Coefficients:
##                 Estimate Std. Error t value Pr(>|t|)    
## (Intercept)   -736527910   46817945  -15.73   <2e-16 ***
## `TotExp^0.06`  620060216   27518940   22.53   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 90490000 on 188 degrees of freedom
## Multiple R-squared:  0.7298, Adjusted R-squared:  0.7283 
## F-statistic: 507.7 on 1 and 188 DF,  p-value: < 2.2e-16
par(mfrow=c(2,2))
plot(df1.lm)

This model looks better. The relationship between the transformed variables is more linear than the variables in the previous model. The residuals look more random.

Forecast life expectancy when TotExp^.06 =1.5. Then forecast life expectancy when TotExp^.06=2.5.

pred1 <- predict(df1.lm, newdata=list(`TotExp^0.06`=1.5))
pred1
##         1 
## 193562414
pred2 <- predict(df1.lm, newdata=list(`TotExp^0.06`=2.5))
pred2
##         1 
## 813622630

LifeExp = b0+b1 x PropMd + b2 x TotExp +b3 x PropMD x TotExp

df.lm1 <- lm(LifeExp ~ PropMD + TotExp + PropMD*TotExp, data=df)
summary(df.lm1)
## 
## Call:
## lm(formula = LifeExp ~ PropMD + TotExp + PropMD * TotExp, data = df)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -27.320  -4.132   2.098   6.540  13.074 
## 
## Coefficients:
##                 Estimate Std. Error t value Pr(>|t|)    
## (Intercept)    6.277e+01  7.956e-01  78.899  < 2e-16 ***
## PropMD         1.497e+03  2.788e+02   5.371 2.32e-07 ***
## TotExp         7.233e-05  8.982e-06   8.053 9.39e-14 ***
## PropMD:TotExp -6.026e-03  1.472e-03  -4.093 6.35e-05 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 8.765 on 186 degrees of freedom
## Multiple R-squared:  0.3574, Adjusted R-squared:  0.3471 
## F-statistic: 34.49 on 3 and 186 DF,  p-value: < 2.2e-16

Build the following multiple regression model and interpret the F Statistics, R^2, standard error, and p-values. How good is the model?

par(mfrow=c(2,2))
plot(df.lm1)
## Warning in sqrt(crit * p * (1 - hh)/hh): NaNs produced

## Warning in sqrt(crit * p * (1 - hh)/hh): NaNs produced

The model is not good. The residuals have a clear pattern. The R-squared is small.

Forecast LifeExp when PropMD=.03 and TotExp = 14. Does this forecast seem realistic? Why or why not?

pred3 <- predict(df.lm1, newdata=list(PropMD=1.5, TotExp=14))
pred3
##        1 
## 2308.888

This forecast does not seem realistic for the context. This number is supposed to be within the range of a human’s life expectancy.