library(tinytex)
## Warning: package 'tinytex' was built under R version 4.3.3
\[Import \ the \ data\]
data= read.csv("C:/Users/Chafiaa/Downloads/who.csv")
head(data)
## Country LifeExp InfantSurvival Under5Survival TBFree PropMD
## 1 Afghanistan 42 0.835 0.743 0.99769 0.000228841
## 2 Albania 71 0.985 0.983 0.99974 0.001143127
## 3 Algeria 71 0.967 0.962 0.99944 0.001060478
## 4 Andorra 82 0.997 0.996 0.99983 0.003297297
## 5 Angola 41 0.846 0.740 0.99656 0.000070400
## 6 Antigua and Barbuda 73 0.990 0.989 0.99991 0.000142857
## PropRN PersExp GovtExp TotExp
## 1 0.000572294 20 92 112
## 2 0.004614439 169 3128 3297
## 3 0.002091362 108 5184 5292
## 4 0.003500000 2589 169725 172314
## 5 0.001146162 36 1620 1656
## 6 0.002773810 503 12543 13046
\[Answer1\]
model <- lm(LifeExp ~ TotExp, data)
summary(model)
##
## Call:
## lm(formula = LifeExp ~ TotExp, data = data)
##
## Residuals:
## Min 1Q Median 3Q Max
## -24.764 -4.778 3.154 7.116 13.292
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 6.475e+01 7.535e-01 85.933 < 2e-16 ***
## TotExp 6.297e-05 7.795e-06 8.079 7.71e-14 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 9.371 on 188 degrees of freedom
## Multiple R-squared: 0.2577, Adjusted R-squared: 0.2537
## F-statistic: 65.26 on 1 and 188 DF, p-value: 7.714e-14
##F=65.26 , P= 7.714e-14, SE=7.535e-01, R^2= 0.2577
plot(LifeExp ~ TotExp, data)
abline(model)
plot(model$residuals ~ data$TotExp)
abline(h = 0, lty = 3)
hist(model$residuals)
qqnorm(model$residuals)
qqline(model$residuals)
##our assumption of linear regression wasn't met R^2 value is 26% far from 100% , graphs present too many outliers , so the value of F, P, R^2 won't make any difference.
\[Answer2\]
data$LifeExpXform <- data$LifeExp^4.6
data$TotExpXform <- data$TotExp^0.06
model <- lm(LifeExpXform ~ TotExp, data)
summary(model)
##
## Call:
## lm(formula = LifeExpXform ~ TotExp, data = data)
##
## Residuals:
## Min 1Q Median 3Q Max
## -309107631 -103496133 18566535 100019031 273607812
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 2.542e+08 1.064e+07 23.89 <2e-16 ***
## TotExp 1.290e+03 1.101e+02 11.72 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 132300000 on 188 degrees of freedom
## Multiple R-squared: 0.4222, Adjusted R-squared: 0.4191
## F-statistic: 137.4 on 1 and 188 DF, p-value: < 2.2e-16
##F:137.4, R-squared: 0.4222, p-value:2.2e-16,Std. Error:1.064e+07
plot(LifeExpXform ~ TotExpXform, data)
abline(model)
plot(model$residuals ~ data$TotExpXform)
abline(h = 0, lty = 3)
hist(model$residuals)
qqnorm(model$residuals)
qqline(model$residuals)
##this model better then then model one but I still can see outliers, and the distribution close to normal our assumption is met with this model & F=137.4 significant relationship
\[Answer3\]
pred_lifeExp <- 2.542e+08 + 1.290e+03 * 1.5
(pred_lifeExp <- pred_lifeExp^(1/4.6))
## [1] 67.17579
\[answer4\] \[LifeExp = b0+b1 x PropMd + b2 x TotExp +b3 x PropMD x TotExp\]
model <- lm(LifeExp ~ PropMD * TotExp, data)
summary(model)
##
## Call:
## lm(formula = LifeExp ~ PropMD * TotExp, data = data)
##
## Residuals:
## Min 1Q Median 3Q Max
## -27.320 -4.132 2.098 6.540 13.074
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 6.277e+01 7.956e-01 78.899 < 2e-16 ***
## PropMD 1.497e+03 2.788e+02 5.371 2.32e-07 ***
## TotExp 7.233e-05 8.982e-06 8.053 9.39e-14 ***
## PropMD:TotExp -6.026e-03 1.472e-03 -4.093 6.35e-05 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 8.765 on 186 degrees of freedom
## Multiple R-squared: 0.3574, Adjusted R-squared: 0.3471
## F-statistic: 34.49 on 3 and 186 DF, p-value: < 2.2e-16
##F=34.49 , p-value: < 2.2e-16, R-squared: 0.3574 bad model, SDE= 8.765 , P= 2.2e-16
plot(LifeExp ~ PropMD * TotExp, data)
abline(model)
## Warning in abline(model): only using the first two of 4 regression coefficients
plot(model$residuals ~ PropMD * TotExp, data)
abline(h = 0, lty = 3)
hist(model$residuals)
qqnorm(model$residuals)
qqline(model$residuals)
#assumption is not met and the model is bad 35% R^2
\[Answer5\]
(pred_lifeExp <- 6.277e+01 + 1.497e+03 * 0.03 + 7.233e-05 * 14 + -6.026e-03 * 0.03 * 14)
## [1] 107.6785
##almost 108 years it unusual for people to live this long and it will be presented as outlier