who <- read.csv('/Users/haigbedros/Desktop/MSDS/Spring 24/605/HW/HW12/who.csv')

head(who)
##               Country LifeExp InfantSurvival Under5Survival  TBFree      PropMD
## 1         Afghanistan      42          0.835          0.743 0.99769 0.000228841
## 2             Albania      71          0.985          0.983 0.99974 0.001143127
## 3             Algeria      71          0.967          0.962 0.99944 0.001060478
## 4             Andorra      82          0.997          0.996 0.99983 0.003297297
## 5              Angola      41          0.846          0.740 0.99656 0.000070400
## 6 Antigua and Barbuda      73          0.990          0.989 0.99991 0.000142857
##        PropRN PersExp GovtExp TotExp
## 1 0.000572294      20      92    112
## 2 0.004614439     169    3128   3297
## 3 0.002091362     108    5184   5292
## 4 0.003500000    2589  169725 172314
## 5 0.001146162      36    1620   1656
## 6 0.002773810     503   12543  13046
  1. Provide a scatterplot of LifeExp~TotExp, and run simple linear regression. Do not transform the variables. Provide and interpret the F statistics, R^2, standard error,and p-values only. Discuss whether the assumptions of simple linear regression met.
plot(who$TotExp, who$LifeExp)

model <- lm(LifeExp ~ TotExp, data = who)

summary(model)
## 
## Call:
## lm(formula = LifeExp ~ TotExp, data = who)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -24.764  -4.778   3.154   7.116  13.292 
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)    
## (Intercept) 6.475e+01  7.535e-01  85.933  < 2e-16 ***
## TotExp      6.297e-05  7.795e-06   8.079 7.71e-14 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 9.371 on 188 degrees of freedom
## Multiple R-squared:  0.2577, Adjusted R-squared:  0.2537 
## F-statistic: 65.26 on 1 and 188 DF,  p-value: 7.714e-14
par(mfrow = c(2, 2))
plot(model)

Interpretation:

Based on the scatterplot, the assumptions of simple linear regression may not be fully met. The data points show a potential non-linear pattern and suggest increasing variance in Life Expectancy as Total Expenditures increase, which could violate linearity and homoscedasticity assumptions.

  1. Raise life expectancy to the 4.6 power (i.e., LifeExp^4.6). Raise total expenditures to the 0.06 power (nearly a log transform, TotExp^.06). Plot LifeExp^4.6 as a function of TotExp^.06, and re-run the simple regression model using the transformed variables. Provide and interpret the F statistics, R^2, standard error, and p-values.

Which model is “better?”

who$LifeExp_raised <- who$LifeExp^4.6
who$TotExp_raised <- who$TotExp^.06

plot(who$TotExp_raised, who$LifeExp_raised)

transformed_model <- lm(who$LifeExp_raised ~ who$TotExp_raised, data = who)

summary(transformed_model)
## 
## Call:
## lm(formula = who$LifeExp_raised ~ who$TotExp_raised, data = who)
## 
## Residuals:
##        Min         1Q     Median         3Q        Max 
## -308616089  -53978977   13697187   59139231  211951764 
## 
## Coefficients:
##                     Estimate Std. Error t value Pr(>|t|)    
## (Intercept)       -736527910   46817945  -15.73   <2e-16 ***
## who$TotExp_raised  620060216   27518940   22.53   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 90490000 on 188 degrees of freedom
## Multiple R-squared:  0.7298, Adjusted R-squared:  0.7283 
## F-statistic: 507.7 on 1 and 188 DF,  p-value: < 2.2e-16
par(mfrow = c(2, 2))
plot(transformed_model)

From the summary we got:

The transformed model looks better as it has a higher R-squared value, indicating a stronger explanatory power than the original model.

  1. Using the results from 3, forecast life expectancy when TotExp^.06 =1.5. Then forecast life expectancy when TotExp^.06=2.5.
intercept <- -736527910
coefficient <- 620060216

# when TotExp^.06 =1.5
predicted_LifeExp_raised_1_5 <- intercept + coefficient * (1.5)

# when TotExp^.06=2.5
predicted_LifeExp_raised_2_5 <- intercept + coefficient * (2.5)

life_exp_original_1_5 <- predicted_LifeExp_raised_1_5^(1/4.6)
life_exp_original_2_5 <- predicted_LifeExp_raised_2_5^(1/4.6)

life_exp_original_1_5
## [1] 63.31153
life_exp_original_2_5
## [1] 86.50645
  1. Build the following multiple regression model and interpret the F Statistics, R^2, standard error, and p-values. How good is the model?

LifeExp = b0+b1 x PropMd + b2 x TotExp +b3 x PropMD x TotExp

new_model <- lm(LifeExp ~ PropMD + TotExp + PropMD:TotExp, data = who)

summary(new_model)
## 
## Call:
## lm(formula = LifeExp ~ PropMD + TotExp + PropMD:TotExp, data = who)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -27.320  -4.132   2.098   6.540  13.074 
## 
## Coefficients:
##                 Estimate Std. Error t value Pr(>|t|)    
## (Intercept)    6.277e+01  7.956e-01  78.899  < 2e-16 ***
## PropMD         1.497e+03  2.788e+02   5.371 2.32e-07 ***
## TotExp         7.233e-05  8.982e-06   8.053 9.39e-14 ***
## PropMD:TotExp -6.026e-03  1.472e-03  -4.093 6.35e-05 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 8.765 on 186 degrees of freedom
## Multiple R-squared:  0.3574, Adjusted R-squared:  0.3471 
## F-statistic: 34.49 on 3 and 186 DF,  p-value: < 2.2e-16

The model is statistically significant as indicated by the F-statistic (34.49) with a p-value less than 2.2e-16. However, it only explains about 35.74% of the variation in life expectancy (R-squared = 0.3574), which is moderate.

The standard error of 8.765 suggests average prediction errors of that magnitude.

All predictors, including the interaction term, are significant (p < 0.05), meaning both the proportion of medical doctors and total expenditure, along with their interaction, are important for predicting life expectancy. Despite its statistical significance, the model leaves room for improvement in explaining life expectancy’s variability.

  1. Forecast LifeExp when PropMD=.03 and TotExp = 14. Does this forecast seem realistic? Why or why not?
# Coefficients from the regression model
b0 = 62.77
b1 = 1497
b2 = 7.233e-05
b3 = -0.006026

# Values for PropMD and TotExp
PropMD = 0.03
TotExp = 14

# Forecasting LifeExp using the regression equation
LifeExp_forecast = b0 + (b1 * PropMD) + (b2 * TotExp) + (b3 * PropMD * TotExp)
LifeExp_forecast
## [1] 107.6785

The forecast of 107.6785 years for life expectancy is higher than current global averages and may be considered unrealistic, suggesting that the model may not be accurately capturing the complex factors that determine life expectancy.