Import your data

data(flights)

flights %>% skimr::skim()
Data summary
Name Piped data
Number of rows 336776
Number of columns 19
_______________________
Column type frequency:
character 4
numeric 14
POSIXct 1
________________________
Group variables None

Variable type: character

skim_variable n_missing complete_rate min max empty n_unique whitespace
carrier 0 1.00 2 2 0 16 0
tailnum 2512 0.99 5 6 0 4043 0
origin 0 1.00 3 3 0 3 0
dest 0 1.00 3 3 0 105 0

Variable type: numeric

skim_variable n_missing complete_rate mean sd p0 p25 p50 p75 p100 hist
year 0 1.00 2013.00 0.00 2013 2013 2013 2013 2013 ▁▁▇▁▁
month 0 1.00 6.55 3.41 1 4 7 10 12 ▇▆▆▆▇
day 0 1.00 15.71 8.77 1 8 16 23 31 ▇▇▇▇▆
dep_time 8255 0.98 1349.11 488.28 1 907 1401 1744 2400 ▁▇▆▇▃
sched_dep_time 0 1.00 1344.25 467.34 106 906 1359 1729 2359 ▁▇▇▇▃
dep_delay 8255 0.98 12.64 40.21 -43 -5 -2 11 1301 ▇▁▁▁▁
arr_time 8713 0.97 1502.05 533.26 1 1104 1535 1940 2400 ▁▃▇▇▇
sched_arr_time 0 1.00 1536.38 497.46 1 1124 1556 1945 2359 ▁▃▇▇▇
arr_delay 9430 0.97 6.90 44.63 -86 -17 -5 14 1272 ▇▁▁▁▁
flight 0 1.00 1971.92 1632.47 1 553 1496 3465 8500 ▇▃▃▁▁
air_time 9430 0.97 150.69 93.69 20 82 129 192 695 ▇▂▂▁▁
distance 0 1.00 1039.91 733.23 17 502 872 1389 4983 ▇▃▂▁▁
hour 0 1.00 13.18 4.66 1 9 13 17 23 ▁▇▇▇▅
minute 0 1.00 26.23 19.30 0 8 29 44 59 ▇▃▆▃▅

Variable type: POSIXct

skim_variable n_missing complete_rate min max median n_unique
time_hour 0 1 2013-01-01 05:00:00 2013-12-31 23:00:00 2013-07-03 10:00:00 6936
Data <- readr::read_csv('https://raw.githubusercontent.com/rfordatascience/tidytuesday/master/data/2022/2022-11-29/wcmatches.csv')
## Rows: 900 Columns: 15
## ── Column specification ────────────────────────────────────────────────────────
## Delimiter: ","
## chr  (11): country, city, stage, home_team, away_team, outcome, win_conditio...
## dbl   (3): year, home_score, away_score
## date  (1): date
## 
## ℹ Use `spec()` to retrieve the full column specification for this data.
## ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
Data
## # A tibble: 900 × 15
##     year country city    stage home_team away_team home_score away_score outcome
##    <dbl> <chr>   <chr>   <chr> <chr>     <chr>          <dbl>      <dbl> <chr>  
##  1  1930 Uruguay Montev… Grou… France    Mexico             4          1 H      
##  2  1930 Uruguay Montev… Grou… Belgium   United S…          0          3 A      
##  3  1930 Uruguay Montev… Grou… Brazil    Yugoslav…          1          2 A      
##  4  1930 Uruguay Montev… Grou… Peru      Romania            1          3 A      
##  5  1930 Uruguay Montev… Grou… Argentina France             1          0 H      
##  6  1930 Uruguay Montev… Grou… Chile     Mexico             3          0 H      
##  7  1930 Uruguay Montev… Grou… Bolivia   Yugoslav…          0          4 A      
##  8  1930 Uruguay Montev… Grou… Paraguay  United S…          0          3 A      
##  9  1930 Uruguay Montev… Grou… Uruguay   Peru               1          0 H      
## 10  1930 Uruguay Montev… Grou… Argentina Mexico             6          3 H      
## # ℹ 890 more rows
## # ℹ 6 more variables: win_conditions <chr>, winning_team <chr>,
## #   losing_team <chr>, date <date>, month <chr>, dayofweek <chr>

Create Data frame functions

Example 1: count columns

code snippets

ncol_num <- flights %>%
    
    # Select a type of variables
    select(where(is.numeric)) %>%
    
    # Count columns
    ncol()

ncol_num
## [1] 14

Turn them into a function

# Create a function to count # of a type of columns
count_numeric_var <- function(.data) {
    
    # body
    ncol_num <- .data %>%
        
        # Select a type of variables
        select(where(is.numeric)) %>%
        
        # Count columns
        ncol()
    
    # return value
    return(ncol_num)
    
}

flights %>% count_numeric_var()
## [1] 14
flights %>% .[, -1:-13] %>% count_numeric_var()
## [1] 4

Adding arguments for details of operation

# Create a function to count # of a type of columns
count_type_of_var <- function(.data, type = "numeric") {
    
    # if statement for type of variables
    if(type == "numeric") {
        
        # body
        ncol_num <- .data %>%
            
            # Select a type of variables
            select(where(is.numeric)) %>%
            
            # Count columns
            ncol()
        
    } else if(type == "character") {
        
        # body
        ncol_num <- .data %>%
            
        # Select a type of variables
        select(where(is.character)) %>%
            
        # Count columns
        ncol()
        
    }
    
    
    # return value
    return(ncol_num)
    
}

flights %>% count_type_of_var(type = "character")
## [1] 4
flights %>% .[, -1:-13] %>% count_type_of_var(type = "character")
## [1] 1

Example 2: count rows

code snippets

nrow_num <- flights %>%
    
    # filter rows that meet a condition
    filter(carrier == "UA") %>%
    
    # Count rows
    nrow()

nrow_num
## [1] 58665

Turn them into a function

# Create a function to count # of a type of columns
count_n_flights_by_carrier <- function(.data, carrier_name) {
    
    # body
    nrow_num <- .data %>%
        
        # filter rows that meet a condition
        filter(carrier == carrier_name) %>%
        
        # Count rows
        nrow()
    
    nrow_num
    
    # return value
    return(nrow_num)
    
}

flights %>% count_n_flights_by_carrier(carrier_name = "UA")
## [1] 58665
flights %>% .[1:10, ] %>% count_n_flights_by_carrier(carrier_name = "UA")
## [1] 3

Example 3: count rows

Create your own.

code snippets

Use the filter() function to select rows that meet a condition. Refer to Chapter 5.2 Filter rows with filter()

nrow_numb <- Data %>%
    
    # filter rows that meet a condition
    filter(country == "Brazil") %>%
    
    # Count rows
    nrow()

nrow_numb
## [1] 86

Turn them into a function

# Create a function to count # of a type of columns
count_n_games_by_brazil <- function(.Data, country) {
    
    # body
    nrow_numb <- .Data %>%
        
        # filter rows that meet a condition
        filter(country == country) %>%
        
        # Count rows
        nrow()
    
    nrow_numb
    
    # return value
    return(nrow_numb)
    
}

Data %>% count_n_games_by_brazil(country = "Brazil")
## [1] 900