R Markdown

This is an R Markdown document. Markdown is a simple formatting syntax for authoring HTML, PDF, and MS Word documents. For more details on using R Markdown see http://rmarkdown.rstudio.com.

When you click the Knit button a document will be generated that includes both content as well as the output of any embedded R code chunks within the document. You can embed an R code chunk like this:

summary(cars)
##      speed           dist       
##  Min.   : 4.0   Min.   :  2.00  
##  1st Qu.:12.0   1st Qu.: 26.00  
##  Median :15.0   Median : 36.00  
##  Mean   :15.4   Mean   : 42.98  
##  3rd Qu.:19.0   3rd Qu.: 56.00  
##  Max.   :25.0   Max.   :120.00

Including Plots

You can also embed plots, for example:

Note that the echo = FALSE parameter was added to the code chunk to prevent printing of the R code that generated the plot.

#(1) and (2)
# Set the CRAN mirror
chooseCRANmirror(ind=1)

# Install the packages
install.packages("rpart")
## Installing package into 'C:/Users/Home/AppData/Local/R/win-library/4.3'
## (as 'lib' is unspecified)
## package 'rpart' successfully unpacked and MD5 sums checked
## Warning: cannot remove prior installation of package 'rpart'
## Warning in file.copy(savedcopy, lib, recursive = TRUE): problem copying
## C:\Users\Home\AppData\Local\R\win-library\4.3\00LOCK\rpart\libs\x64\rpart.dll
## to C:\Users\Home\AppData\Local\R\win-library\4.3\rpart\libs\x64\rpart.dll:
## Permission denied
## Warning: restored 'rpart'
## 
## The downloaded binary packages are in
##  C:\Users\Home\AppData\Local\Temp\RtmpqyR593\downloaded_packages
install.packages("caret")
## Installing package into 'C:/Users/Home/AppData/Local/R/win-library/4.3'
## (as 'lib' is unspecified)
## package 'caret' successfully unpacked and MD5 sums checked
## Warning: cannot remove prior installation of package 'caret'
## Warning in file.copy(savedcopy, lib, recursive = TRUE): problem copying
## C:\Users\Home\AppData\Local\R\win-library\4.3\00LOCK\caret\libs\x64\caret.dll
## to C:\Users\Home\AppData\Local\R\win-library\4.3\caret\libs\x64\caret.dll:
## Permission denied
## Warning: restored 'caret'
## 
## The downloaded binary packages are in
##  C:\Users\Home\AppData\Local\Temp\RtmpqyR593\downloaded_packages
install.packages("caret")
## Installing package into 'C:/Users/Home/AppData/Local/R/win-library/4.3'
## (as 'lib' is unspecified)
## package 'caret' successfully unpacked and MD5 sums checked
## Warning: cannot remove prior installation of package 'caret'
## Warning in file.copy(savedcopy, lib, recursive = TRUE): problem copying
## C:\Users\Home\AppData\Local\R\win-library\4.3\00LOCK\caret\libs\x64\caret.dll
## to C:\Users\Home\AppData\Local\R\win-library\4.3\caret\libs\x64\caret.dll:
## Permission denied
## Warning: restored 'caret'
## 
## The downloaded binary packages are in
##  C:\Users\Home\AppData\Local\Temp\RtmpqyR593\downloaded_packages
library(caret)
## Warning: package 'caret' was built under R version 4.3.3
## Loading required package: ggplot2
## Loading required package: lattice
library("rpart")
## Warning: package 'rpart' was built under R version 4.3.3
T3 <- read.csv("https://goo.gl/At238b",stringsAsFactors = FALSE)
View(T3)
#(3) Select the desired features from the original dataset T3 with adjusted column names
titanic <- T3[, c("survived", "embarked", "age", "sex", "sibsp", "parch", "fare")]
titanic
##      survived embarked   age    sex sibsp parch     fare
## 1           1        S 29.00 female     0     0 211.3375
## 2           1        S  0.92   male     1     2 151.5500
## 3           0        S  2.00 female     1     2 151.5500
## 4           0        S 30.00   male     1     2 151.5500
## 5           0        S 25.00 female     1     2 151.5500
## 6           1        S 48.00   male     0     0  26.5500
## 7           1        S 63.00 female     1     0  77.9583
## 8           0        S 39.00   male     0     0   0.0000
## 9           1        S 53.00 female     2     0  51.4792
## 10          0        C 71.00   male     0     0  49.5042
## 11          0        C 47.00   male     1     0 227.5250
## 12          1        C 18.00 female     1     0 227.5250
## 13          1        C 24.00 female     0     0  69.3000
## 14          1        S 26.00 female     0     0  78.8500
## 15          1        S 80.00   male     0     0  30.0000
## 16          0        S    NA   male     0     0  25.9250
## 17          0        C 24.00   male     0     1 247.5208
## 18          1        C 50.00 female     0     1 247.5208
## 19          1        C 32.00 female     0     0  76.2917
## 20          0        C 36.00   male     0     0  75.2417
## 21          1        S 37.00   male     1     1  52.5542
## 22          1        S 47.00 female     1     1  52.5542
## 23          1        C 26.00   male     0     0  30.0000
## 24          1        C 42.00 female     0     0 227.5250
## 25          1        S 29.00 female     0     0 221.7792
## 26          0        C 25.00   male     0     0  26.0000
## 27          1        C 25.00   male     1     0  91.0792
## 28          1        C 19.00 female     1     0  91.0792
## 29          1        S 35.00 female     0     0 135.6333
## 30          1        S 28.00   male     0     0  26.5500
## 31          0        S 45.00   male     0     0  35.5000
## 32          1        C 40.00   male     0     0  31.0000
## 33          1        S 30.00 female     0     0 164.8667
## 34          1        S 58.00 female     0     0  26.5500
## 35          0        S 42.00   male     0     0  26.5500
## 36          1        C 45.00 female     0     0 262.3750
## 37          1        S 22.00 female     0     1  55.0000
## 38          1        S    NA   male     0     0  26.5500
## 39          0        S 41.00   male     0     0  30.5000
## 40          0        C 48.00   male     0     0  50.4958
## 41          0        C    NA   male     0     0  39.6000
## 42          1        C 44.00 female     0     0  27.7208
## 43          1        S 59.00 female     2     0  51.4792
## 44          1        C 60.00 female     0     0  76.2917
## 45          1        C 41.00 female     0     0 134.5000
## 46          0        S 45.00   male     0     0  26.5500
## 47          0        S    NA   male     0     0  31.0000
## 48          1        S 42.00   male     0     0  26.2875
## 49          1        C 53.00 female     0     0  27.4458
## 50          1        C 36.00   male     0     1 512.3292
## 51          1        C 58.00 female     0     1 512.3292
## 52          0        S 33.00   male     0     0   5.0000
## 53          0        S 28.00   male     0     0  47.1000
## 54          0        S 17.00   male     0     0  47.1000
## 55          1        S 11.00   male     1     2 120.0000
## 56          1        S 14.00 female     1     2 120.0000
## 57          1        S 36.00   male     1     2 120.0000
## 58          1        S 36.00 female     1     2 120.0000
## 59          0        S 49.00   male     0     0  26.0000
## 60          1        C    NA female     0     0  27.7208
## 61          0        S 36.00   male     1     0  78.8500
## 62          1        S 76.00 female     1     0  78.8500
## 63          0        S 46.00   male     1     0  61.1750
## 64          1        S 47.00 female     1     0  61.1750
## 65          1        S 27.00   male     1     0  53.1000
## 66          1        S 33.00 female     1     0  53.1000
## 67          1        C 36.00 female     0     0 262.3750
## 68          1        S 30.00 female     0     0  86.5000
## 69          1        C 45.00   male     0     0  29.7000
## 70          1        S    NA female     0     1  55.0000
## 71          0        S    NA   male     0     0   0.0000
## 72          0        C 27.00   male     1     0 136.7792
## 73          1        C 26.00 female     1     0 136.7792
## 74          1        S 22.00 female     0     0 151.5500
## 75          0        S    NA   male     0     0  52.0000
## 76          0        S 47.00   male     0     0  25.5875
## 77          1        C 39.00 female     1     1  83.1583
## 78          0        C 37.00   male     1     1  83.1583
## 79          1        C 64.00 female     0     2  83.1583
## 80          1        S 55.00 female     2     0  25.7000
## 81          0        S    NA   male     0     0  26.5500
## 82          0        S 70.00   male     1     1  71.0000
## 83          1        S 36.00 female     0     2  71.0000
## 84          1        S 64.00 female     1     1  26.5500
## 85          0        C 39.00   male     1     0  71.2833
## 86          1        C 38.00 female     1     0  71.2833
## 87          1        S 51.00   male     0     0  26.5500
## 88          1        S 27.00   male     0     0  30.5000
## 89          1        S 33.00 female     0     0 151.5500
## 90          0        S 31.00   male     1     0  52.0000
## 91          1        S 27.00 female     1     2  52.0000
## 92          1        S 31.00   male     1     0  57.0000
## 93          1        S 17.00 female     1     0  57.0000
## 94          1        S 53.00   male     1     1  81.8583
## 95          1        S  4.00   male     0     2  81.8583
## 96          1        S 54.00 female     1     1  81.8583
## 97          0        C 50.00   male     1     0 106.4250
## 98          1        C 27.00 female     1     1 247.5208
## 99          1        C 48.00 female     1     0 106.4250
## 100         1        C 48.00 female     1     0  39.6000
## 101         1        C 49.00   male     1     0  56.9292
## 102         0        C 39.00   male     0     0  29.7000
## 103         1        C 23.00 female     0     1  83.1583
## 104         1        C 38.00 female     0     0 227.5250
## 105         1        C 54.00 female     1     0  78.2667
## 106         0        C 36.00 female     0     0  31.6792
## 107         0        S    NA   male     0     0 221.7792
## 108         1        S    NA female     0     0  31.6833
## 109         1        C    NA female     0     0 110.8833
## 110         1        S 36.00   male     0     0  26.3875
## 111         0        C 30.00   male     0     0  27.7500
## 112         1        S 24.00 female     3     2 263.0000
## 113         1        S 28.00 female     3     2 263.0000
## 114         1        S 23.00 female     3     2 263.0000
## 115         0        S 19.00   male     3     2 263.0000
## 116         0        S 64.00   male     1     4 263.0000
## 117         1        S 60.00 female     1     4 263.0000
## 118         1        C 30.00 female     0     0  56.9292
## 119         0        S    NA   male     0     0  26.5500
## 120         1        S 50.00   male     2     0 133.6500
## 121         1        C 43.00   male     1     0  27.7208
## 122         1        S    NA female     1     0 133.6500
## 123         1        C 22.00 female     0     2  49.5000
## 124         1        C 60.00   male     1     1  79.2000
## 125         1        C 48.00 female     1     1  79.2000
## 126         0        S    NA   male     0     0   0.0000
## 127         0        S 37.00   male     1     0  53.1000
## 128         1        S 35.00 female     1     0  53.1000
## 129         0        S 47.00   male     0     0  38.5000
## 130         1        C 35.00 female     0     0 211.5000
## 131         1        C 22.00 female     0     1  59.4000
## 132         1        C 45.00 female     0     1  59.4000
## 133         0        C 24.00   male     0     0  79.2000
## 134         1        C 49.00   male     1     0  89.1042
## 135         1        C    NA female     1     0  89.1042
## 136         0        C 71.00   male     0     0  34.6542
## 137         1        C 53.00   male     0     0  28.5000
## 138         1        S 19.00 female     0     0  30.0000
## 139         0        S 38.00   male     0     1 153.4625
## 140         1        S 58.00 female     0     1 153.4625
## 141         1        C 23.00   male     0     1  63.3583
## 142         1        C 45.00 female     0     1  63.3583
## 143         0        C 46.00   male     0     0  79.2000
## 144         1        C 25.00   male     1     0  55.4417
## 145         1        C 25.00 female     1     0  55.4417
## 146         1        C 48.00   male     1     0  76.7292
## 147         1        C 49.00 female     1     0  76.7292
## 148         0        S    NA   male     0     0  42.4000
## 149         0        S 45.00   male     1     0  83.4750
## 150         1        S 35.00 female     1     0  83.4750
## 151         0        S 40.00   male     0     0   0.0000
## 152         1        C 27.00   male     0     0  76.7292
## 153         1        S    NA   male     0     0  30.0000
## 154         1        C 24.00 female     0     0  83.1583
## 155         0        S 55.00   male     1     1  93.5000
## 156         1        S 52.00 female     1     1  93.5000
## 157         0        S 42.00   male     0     0  42.5000
## 158         0        S    NA   male     0     0  51.8625
## 159         0        S 55.00   male     0     0  50.0000
## 160         1        C 16.00 female     0     1  57.9792
## 161         1        C 44.00 female     0     1  57.9792
## 162         1        S 51.00 female     1     0  77.9583
## 163         0        S 42.00   male     1     0  52.0000
## 164         1        S 35.00 female     1     0  52.0000
## 165         1        C 35.00   male     0     0  26.5500
## 166         1        S 38.00   male     1     0  90.0000
## 167         0        C    NA   male     0     0  30.6958
## 168         1        S 35.00 female     1     0  90.0000
## 169         1     <NA> 38.00 female     0     0  80.0000
## 170         0        C 50.00 female     0     0  28.7125
## 171         1        S 49.00   male     0     0   0.0000
## 172         0        S 46.00   male     0     0  26.0000
## 173         0        S 50.00   male     0     0  26.0000
## 174         0        C 32.50   male     0     0 211.5000
## 175         0        C 58.00   male     0     0  29.7000
## 176         0        S 41.00   male     1     0  51.8625
## 177         1        S    NA female     1     0  51.8625
## 178         1        S 42.00   male     1     0  52.5542
## 179         1        S 45.00 female     1     0  52.5542
## 180         0        S    NA   male     0     0  26.5500
## 181         1        S 39.00 female     0     0 211.3375
## 182         1        S 49.00 female     0     0  25.9292
## 183         1        C 30.00 female     0     0 106.4250
## 184         1        C 35.00   male     0     0 512.3292
## 185         0        C    NA   male     0     0  27.7208
## 186         0        S 42.00   male     0     0  26.5500
## 187         1        C 55.00 female     0     0  27.7208
## 188         1        S 16.00 female     0     1  39.4000
## 189         1        S 51.00 female     0     1  39.4000
## 190         0        S 29.00   male     0     0  30.0000
## 191         1        S 21.00 female     0     0  77.9583
## 192         0        S 30.00   male     0     0  45.5000
## 193         1        C 58.00 female     0     0 146.5208
## 194         1        S 15.00 female     0     1 211.3375
## 195         0        S 30.00   male     0     0  26.0000
## 196         1        S 16.00 female     0     0  86.5000
## 197         1        C    NA   male     0     0  29.7000
## 198         0        S 19.00   male     1     0  53.1000
## 199         1        S 18.00 female     1     0  53.1000
## 200         1        C 24.00 female     0     0  49.5042
## 201         0        C 46.00   male     0     0  75.2417
## 202         0        S 54.00   male     0     0  51.8625
## 203         1        S 36.00   male     0     0  26.2875
## 204         0        C 28.00   male     1     0  82.1708
## 205         1        C    NA female     1     0  82.1708
## 206         0        S 65.00   male     0     0  26.5500
## 207         0        Q 44.00   male     2     0  90.0000
## 208         1        Q 33.00 female     1     0  90.0000
## 209         1        Q 37.00 female     1     0  90.0000
## 210         1        C 30.00   male     1     0  57.7500
## 211         0        S 55.00   male     0     0  30.5000
## 212         0        S 47.00   male     0     0  42.4000
## 213         0        C 37.00   male     0     1  29.7000
## 214         1        C 31.00 female     1     0 113.2750
## 215         1        C 23.00 female     1     0 113.2750
## 216         0        C 58.00   male     0     2 113.2750
## 217         1        S 19.00 female     0     2  26.2833
## 218         0        S 64.00   male     0     0  26.0000
## 219         1        C 39.00 female     0     0 108.9000
## 220         1        C    NA   male     0     0  25.7417
## 221         1        C 22.00 female     0     1  61.9792
## 222         0        C 65.00   male     0     1  61.9792
## 223         0        C 28.50   male     0     0  27.7208
## 224         0        S    NA   male     0     0   0.0000
## 225         0        S 45.50   male     0     0  28.5000
## 226         0        S 23.00   male     0     0  93.5000
## 227         0        S 29.00   male     1     0  66.6000
## 228         1        S 22.00 female     1     0  66.6000
## 229         0        C 18.00   male     1     0 108.9000
## 230         1        C 17.00 female     1     0 108.9000
## 231         1        S 30.00 female     0     0  93.5000
## 232         1        S 52.00   male     0     0  30.5000
## 233         0        S 47.00   male     0     0  52.0000
## 234         1        C 56.00 female     0     1  83.1583
## 235         0        S 38.00   male     0     0   0.0000
## 236         1        S    NA   male     0     0  39.6000
## 237         0        C 22.00   male     0     0 135.6333
## 238         0        C    NA   male     0     0 227.5250
## 239         1        S 43.00 female     0     1 211.3375
## 240         0        S 31.00   male     0     0  50.4958
## 241         1        S 45.00   male     0     0  26.5500
## 242         0        S    NA   male     0     0  50.0000
## 243         1        C 33.00 female     0     0  27.7208
## 244         0        C 46.00   male     0     0  79.2000
## 245         0        C 36.00   male     0     0  40.1250
## 246         1        S 33.00 female     0     0  86.5000
## 247         0        C 55.00   male     1     0  59.4000
## 248         1        C 54.00 female     1     0  59.4000
## 249         0        S 33.00   male     0     0  26.5500
## 250         1        C 13.00   male     2     2 262.3750
## 251         1        C 18.00 female     2     2 262.3750
## 252         1        C 21.00 female     2     2 262.3750
## 253         0        C 61.00   male     1     3 262.3750
## 254         1        C 48.00 female     1     3 262.3750
## 255         1        S    NA   male     0     0  30.5000
## 256         1        C 24.00 female     0     0  69.3000
## 257         1        S    NA   male     0     0  26.0000
## 258         1        C 35.00 female     1     0  57.7500
## 259         1        C 30.00 female     0     0  31.0000
## 260         1        S 34.00   male     0     0  26.5500
## 261         1        S 40.00 female     0     0 153.4625
## 262         1        S 35.00   male     0     0  26.2875
## 263         0        S 50.00   male     1     0  55.9000
## 264         1        S 39.00 female     1     0  55.9000
## 265         1        C 56.00   male     0     0  35.5000
## 266         1        S 28.00   male     0     0  35.5000
## 267         0        S 56.00   male     0     0  26.5500
## 268         0        C 56.00   male     0     0  30.6958
## 269         0        S 24.00   male     1     0  60.0000
## 270         0        S    NA   male     0     0  26.0000
## 271         1        S 18.00 female     1     0  60.0000
## 272         1        S 24.00   male     1     0  82.2667
## 273         1        S 23.00 female     1     0  82.2667
## 274         1        C  6.00   male     0     2 134.5000
## 275         1        C 45.00   male     1     1 134.5000
## 276         1        C 40.00 female     1     1 134.5000
## 277         0        C 57.00   male     1     0 146.5208
## 278         1        C    NA female     1     0 146.5208
## 279         1        C 32.00   male     0     0  30.5000
## 280         0        S 62.00   male     0     0  26.5500
## 281         1        C 54.00   male     1     0  55.4417
## 282         1        C 43.00 female     1     0  55.4417
## 283         1        C 52.00 female     1     0  78.2667
## 284         0        C    NA   male     0     0  27.7208
## 285         1     <NA> 62.00 female     0     0  80.0000
## 286         0        S 67.00   male     1     0 221.7792
## 287         0        S 63.00 female     1     0 221.7792
## 288         0        S 61.00   male     0     0  32.3208
## 289         1        S 48.00 female     0     0  25.9292
## 290         1        S 18.00 female     0     2  79.6500
## 291         0        S 52.00   male     1     1  79.6500
## 292         1        S 39.00 female     1     1  79.6500
## 293         1        S 48.00   male     1     0  52.0000
## 294         1        S    NA female     1     0  52.0000
## 295         0        C 49.00   male     1     1 110.8833
## 296         1        C 17.00   male     0     2 110.8833
## 297         1        C 39.00 female     1     1 110.8833
## 298         1        C    NA female     0     0  79.2000
## 299         1        C 31.00   male     0     0  28.5375
## 300         0        C 40.00   male     0     0  27.7208
## 301         0        S 61.00   male     0     0  33.5000
## 302         0        S 47.00   male     0     0  34.0208
## 303         1        C 35.00 female     0     0 512.3292
## 304         0        C 64.00   male     1     0  75.2500
## 305         1        C 60.00 female     1     0  75.2500
## 306         0        S 60.00   male     0     0  26.5500
## 307         0        S 54.00   male     0     1  77.2875
## 308         0        S 21.00   male     0     1  77.2875
## 309         1        C 55.00 female     0     0 135.6333
## 310         1        S 31.00 female     0     2 164.8667
## 311         0        S 57.00   male     1     1 164.8667
## 312         1        S 45.00 female     1     1 164.8667
## 313         0        C 50.00   male     1     1 211.5000
## 314         0        C 27.00   male     0     2 211.5000
## 315         1        C 50.00 female     1     1 211.5000
## 316         1        S 21.00 female     0     0  26.5500
## 317         0        C 51.00   male     0     1  61.3792
## 318         1        C 21.00   male     0     1  61.3792
## 319         0        S    NA   male     0     0  35.0000
## 320         1        C 31.00 female     0     0 134.5000
## 321         1        S    NA   male     0     0  35.5000
## 322         0        S 62.00   male     0     0  26.5500
## 323         1        C 36.00 female     0     0 135.6333
## 324         0        C 30.00   male     1     0  24.0000
## 325         1        C 28.00 female     1     0  24.0000
## 326         0        S 30.00   male     0     0  13.0000
## 327         0        S 18.00   male     0     0  11.5000
## 328         0        S 25.00   male     0     0  10.5000
## 329         0        S 34.00   male     1     0  26.0000
## 330         1        S 36.00 female     1     0  26.0000
## 331         0        S 57.00   male     0     0  13.0000
## 332         0        S 18.00   male     0     0  11.5000
## 333         0        S 23.00   male     0     0  10.5000
## 334         1        S 36.00 female     0     0  13.0000
## 335         0        S 28.00   male     0     0  10.5000
## 336         0        S 51.00   male     0     0  12.5250
## 337         1        S 32.00   male     1     0  26.0000
## 338         1        S 19.00 female     1     0  26.0000
## 339         0        S 28.00   male     0     0  26.0000
## 340         1        S  1.00   male     2     1  39.0000
## 341         1        S  4.00 female     2     1  39.0000
## 342         1        S 12.00 female     2     1  39.0000
## 343         1        S 36.00 female     0     3  39.0000
## 344         1        S 34.00   male     0     0  13.0000
## 345         1        S 19.00 female     0     0  13.0000
## 346         0        S 23.00   male     0     0  13.0000
## 347         0        S 26.00   male     0     0  13.0000
## 348         0        S 42.00   male     0     0  13.0000
## 349         0        S 27.00   male     0     0  13.0000
## 350         1        S 24.00 female     0     0  13.0000
## 351         1        S 15.00 female     0     2  39.0000
## 352         0        S 60.00   male     1     1  39.0000
## 353         1        S 40.00 female     1     1  39.0000
## 354         1        S 20.00 female     1     0  26.0000
## 355         0        S 25.00   male     1     0  26.0000
## 356         1        S 36.00 female     0     0  13.0000
## 357         0        S 25.00   male     0     0  13.0000
## 358         0        S 42.00   male     0     0  13.0000
## 359         1        S 42.00 female     0     0  13.0000
## 360         1        S  0.83   male     0     2  29.0000
## 361         1        S 26.00   male     1     1  29.0000
## 362         1        S 22.00 female     1     1  29.0000
## 363         1        S 35.00 female     0     0  21.0000
## 364         0        S    NA   male     0     0   0.0000
## 365         0        S 19.00   male     0     0  13.0000
## 366         0        S 44.00 female     1     0  26.0000
## 367         0        S 54.00   male     1     0  26.0000
## 368         0        S 52.00   male     0     0  13.5000
## 369         0        S 37.00   male     1     0  26.0000
## 370         0        S 29.00 female     1     0  26.0000
## 371         1        S 25.00 female     1     1  30.0000
## 372         1        S 45.00 female     0     2  30.0000
## 373         0        S 29.00   male     1     0  26.0000
## 374         1        S 28.00 female     1     0  26.0000
## 375         0        S 29.00   male     0     0  10.5000
## 376         0        S 28.00   male     0     0  13.0000
## 377         1        S 24.00   male     0     0  10.5000
## 378         1        S  8.00 female     0     2  26.2500
## 379         0        S 31.00   male     1     1  26.2500
## 380         1        S 31.00 female     1     1  26.2500
## 381         1        S 22.00 female     0     0  10.5000
## 382         0        S 30.00 female     0     0  13.0000
## 383         0        S    NA female     0     0  21.0000
## 384         0        S 21.00   male     0     0  11.5000
## 385         0        S    NA   male     0     0   0.0000
## 386         1        S  8.00   male     1     1  36.7500
## 387         0        S 18.00   male     0     0  73.5000
## 388         1        S 48.00 female     0     2  36.7500
## 389         1        S 28.00 female     0     0  13.0000
## 390         0        S 32.00   male     0     0  13.0000
## 391         0        S 17.00   male     0     0  73.5000
## 392         0        C 29.00   male     1     0  27.7208
## 393         1        C 24.00 female     1     0  27.7208
## 394         0        S 25.00   male     0     0  31.5000
## 395         0        S 18.00   male     0     0  73.5000
## 396         1        S 18.00 female     0     1  23.0000
## 397         1        S 34.00 female     0     1  23.0000
## 398         0        S 54.00   male     0     0  26.0000
## 399         1        S  8.00   male     0     2  32.5000
## 400         0        S 42.00   male     1     1  32.5000
## 401         1        S 34.00 female     1     1  32.5000
## 402         1        C 27.00 female     1     0  13.8583
## 403         1        C 30.00 female     1     0  13.8583
## 404         0        S 23.00   male     0     0  13.0000
## 405         0        S 21.00   male     0     0  13.0000
## 406         0        S 18.00   male     0     0  13.0000
## 407         0        S 40.00   male     1     0  26.0000
## 408         1        S 29.00 female     1     0  26.0000
## 409         0        S 18.00   male     0     0  10.5000
## 410         0        S 36.00   male     0     0  13.0000
## 411         0        S    NA   male     0     0   0.0000
## 412         0        S 38.00 female     0     0  13.0000
## 413         0        S 35.00   male     0     0  26.0000
## 414         0        S 38.00   male     1     0  21.0000
## 415         0        S 34.00   male     1     0  21.0000
## 416         1        S 34.00 female     0     0  13.0000
## 417         0        S 16.00   male     0     0  26.0000
## 418         0        S 26.00   male     0     0  10.5000
## 419         0        S 47.00   male     0     0  10.5000
## 420         0        S 21.00   male     1     0  11.5000
## 421         0        S 21.00   male     1     0  11.5000
## 422         0        S 24.00   male     0     0  13.5000
## 423         0        S 24.00   male     0     0  13.0000
## 424         0        S 34.00   male     0     0  13.0000
## 425         0        S 30.00   male     0     0  13.0000
## 426         0        S 52.00   male     0     0  13.0000
## 427         0        S 30.00   male     0     0  13.0000
## 428         1        S  0.67   male     1     1  14.5000
## 429         1        S 24.00 female     0     2  14.5000
## 430         0        S 44.00   male     0     0  13.0000
## 431         1        S  6.00 female     0     1  33.0000
## 432         0        S 28.00   male     0     1  33.0000
## 433         1        S 62.00   male     0     0  10.5000
## 434         0        S 30.00   male     0     0  10.5000
## 435         1        S  7.00 female     0     2  26.2500
## 436         0        S 43.00   male     1     1  26.2500
## 437         1        S 45.00 female     1     1  26.2500
## 438         1        S 24.00 female     1     2  65.0000
## 439         1        S 24.00 female     1     2  65.0000
## 440         0        S 49.00   male     1     2  65.0000
## 441         1        S 48.00 female     1     2  65.0000
## 442         1        S 55.00 female     0     0  16.0000
## 443         0        S 24.00   male     2     0  73.5000
## 444         0        S 32.00   male     2     0  73.5000
## 445         0        S 21.00   male     2     0  73.5000
## 446         0        S 18.00 female     1     1  13.0000
## 447         1        S 20.00 female     2     1  23.0000
## 448         0        S 23.00   male     2     1  11.5000
## 449         0        S 36.00   male     0     0  13.0000
## 450         1        S 54.00 female     1     3  23.0000
## 451         0        S 50.00   male     0     0  13.0000
## 452         0        S 44.00   male     1     0  26.0000
## 453         1        S 29.00 female     1     0  26.0000
## 454         0        S 21.00   male     0     0  73.5000
## 455         1        S 42.00   male     0     0  13.0000
## 456         0        S 63.00   male     1     0  26.0000
## 457         0        S 60.00 female     1     0  26.0000
## 458         0        S 33.00   male     0     0  12.2750
## 459         1        S 17.00 female     0     0  10.5000
## 460         0        S 42.00   male     1     0  27.0000
## 461         1        S 24.00 female     2     1  27.0000
## 462         0        S 47.00   male     0     0  15.0000
## 463         0        S 24.00   male     2     0  31.5000
## 464         0        S 22.00   male     2     0  31.5000
## 465         0        S 32.00   male     0     0  10.5000
## 466         1        C 23.00 female     0     0  13.7917
## 467         0        S 34.00   male     1     0  26.0000
## 468         1        S 24.00 female     1     0  26.0000
## 469         0        S 22.00 female     0     0  21.0000
## 470         1        Q    NA female     0     0  12.3500
## 471         0        Q 35.00   male     0     0  12.3500
## 472         1        S 45.00 female     0     0  13.5000
## 473         0        Q 57.00   male     0     0  12.3500
## 474         0        S    NA   male     0     0   0.0000
## 475         0        S 31.00   male     0     0  10.5000
## 476         0        S 26.00 female     1     1  26.0000
## 477         0        S 30.00   male     1     1  26.0000
## 478         0        Q    NA   male     0     0  10.7083
## 479         1        C  1.00 female     1     2  41.5792
## 480         1        C  3.00 female     1     2  41.5792
## 481         0        C 25.00   male     1     2  41.5792
## 482         1        C 22.00 female     1     2  41.5792
## 483         1        C 17.00 female     0     0  12.0000
## 484         1        S    NA female     0     0  33.0000
## 485         1        S 34.00 female     0     0  10.5000
## 486         0        C 36.00   male     0     0  12.8750
## 487         0        S 24.00   male     0     0  10.5000
## 488         0        Q 61.00   male     0     0  12.3500
## 489         0        S 50.00   male     1     0  26.0000
## 490         1        S 42.00 female     1     0  26.0000
## 491         0        S 57.00 female     0     0  10.5000
## 492         0        C    NA   male     0     0  15.0458
## 493         1        C  1.00   male     0     2  37.0042
## 494         0        C 31.00   male     1     1  37.0042
## 495         1        C 24.00 female     1     1  37.0042
## 496         0        C    NA   male     0     0  15.5792
## 497         0        S 30.00   male     0     0  13.0000
## 498         0        S 40.00   male     0     0  16.0000
## 499         0        S 32.00   male     0     0  13.5000
## 500         0        S 30.00   male     0     0  13.0000
## 501         0        S 46.00   male     0     0  26.0000
## 502         1        S 13.00 female     0     1  19.5000
## 503         1        S 41.00 female     0     1  19.5000
## 504         1        S 19.00   male     0     0  10.5000
## 505         0        S 39.00   male     0     0  13.0000
## 506         0        S 48.00   male     0     0  13.0000
## 507         0        S 70.00   male     0     0  10.5000
## 508         0        S 27.00   male     0     0  13.0000
## 509         0        S 54.00   male     0     0  14.0000
## 510         0        S 39.00   male     0     0  26.0000
## 511         0        S 16.00   male     0     0  10.5000
## 512         0        Q 62.00   male     0     0   9.6875
## 513         0        C 32.50   male     1     0  30.0708
## 514         1        C 14.00 female     1     0  30.0708
## 515         1        S  2.00   male     1     1  26.0000
## 516         1        S  3.00   male     1     1  26.0000
## 517         0        S 36.50   male     0     2  26.0000
## 518         0        S 26.00   male     0     0  13.0000
## 519         0        S 19.00   male     1     1  36.7500
## 520         0        S 28.00   male     0     0  13.5000
## 521         1        C 20.00   male     0     0  13.8625
## 522         1        S 29.00 female     0     0  10.5000
## 523         0        S 39.00   male     0     0  13.0000
## 524         1        S 22.00   male     0     0  10.5000
## 525         1        C    NA   male     0     0  13.8625
## 526         0        S 23.00   male     0     0  10.5000
## 527         1        C 29.00   male     0     0  13.8583
## 528         0        S 28.00   male     0     0  10.5000
## 529         0        S    NA   male     0     0   0.0000
## 530         1        S 50.00 female     0     1  26.0000
## 531         0        S 19.00   male     0     0  10.5000
## 532         0        C    NA   male     0     0  15.0500
## 533         0        S 41.00   male     0     0  13.0000
## 534         1        S 21.00 female     0     1  21.0000
## 535         1        S 19.00 female     0     0  26.0000
## 536         0        S 43.00   male     0     1  21.0000
## 537         1        S 32.00 female     0     0  13.0000
## 538         0        S 34.00   male     0     0  13.0000
## 539         1        C 30.00   male     0     0  12.7375
## 540         0        C 27.00   male     0     0  15.0333
## 541         1        S  2.00 female     1     1  26.0000
## 542         1        S  8.00 female     1     1  26.0000
## 543         1        S 33.00 female     0     2  26.0000
## 544         0        S 36.00   male     0     0  10.5000
## 545         0        S 34.00   male     1     0  21.0000
## 546         1        S 30.00 female     3     0  21.0000
## 547         1        S 28.00 female     0     0  13.0000
## 548         0        C 23.00   male     0     0  15.0458
## 549         1        S  0.83   male     1     1  18.7500
## 550         1        S  3.00   male     1     1  18.7500
## 551         1        S 24.00 female     2     3  18.7500
## 552         1        S 50.00 female     0     0  10.5000
## 553         0        S 19.00   male     0     0  10.5000
## 554         1        S 21.00 female     0     0  10.5000
## 555         0        S 26.00   male     0     0  13.0000
## 556         0        S 25.00   male     0     0  13.0000
## 557         0        S 27.00   male     0     0  26.0000
## 558         1        S 25.00 female     0     1  26.0000
## 559         1        S 18.00 female     0     2  13.0000
## 560         1        S 20.00 female     0     0  36.7500
## 561         1        S 30.00 female     0     0  13.0000
## 562         0        S 59.00   male     0     0  13.5000
## 563         1        Q 30.00 female     0     0  12.3500
## 564         0        S 35.00   male     0     0  10.5000
## 565         1        S 40.00 female     0     0  13.0000
## 566         0        S 25.00   male     0     0  13.0000
## 567         0        C 41.00   male     0     0  15.0458
## 568         0        S 25.00   male     0     0  10.5000
## 569         0        S 18.50   male     0     0  13.0000
## 570         0        S 14.00   male     0     0  65.0000
## 571         1        S 50.00 female     0     0  10.5000
## 572         0        S 23.00   male     0     0  13.0000
## 573         1        S 28.00 female     0     0  12.6500
## 574         1        S 27.00 female     0     0  10.5000
## 575         0        S 29.00   male     1     0  21.0000
## 576         0        S 27.00 female     1     0  21.0000
## 577         0        S 40.00   male     0     0  13.0000
## 578         1        S 31.00 female     0     0  21.0000
## 579         0        S 30.00   male     1     0  21.0000
## 580         0        S 23.00   male     1     0  10.5000
## 581         1        S 31.00 female     0     0  21.0000
## 582         0        S    NA   male     0     0   0.0000
## 583         1        S 12.00 female     0     0  15.7500
## 584         1        S 40.00 female     0     0  15.7500
## 585         1        S 32.50 female     0     0  13.0000
## 586         0        S 27.00   male     1     0  26.0000
## 587         1        S 29.00 female     1     0  26.0000
## 588         1        S  2.00   male     1     1  23.0000
## 589         1        S  4.00 female     1     1  23.0000
## 590         1        S 29.00 female     0     2  23.0000
## 591         1        S  0.92 female     1     2  27.7500
## 592         1        S  5.00 female     1     2  27.7500
## 593         0        S 36.00   male     1     2  27.7500
## 594         1        S 33.00 female     1     2  27.7500
## 595         0        S 66.00   male     0     0  10.5000
## 596         0        S    NA   male     0     0  12.8750
## 597         1        S 31.00   male     0     0  13.0000
## 598         1        S    NA   male     0     0  13.0000
## 599         1        S 26.00 female     0     0  13.5000
## 600         0        S 24.00 female     0     0  13.0000
## 601         0        S 42.00   male     0     0   7.5500
## 602         0        S 13.00   male     0     2  20.2500
## 603         0        S 16.00   male     1     1  20.2500
## 604         1        S 35.00 female     1     1  20.2500
## 605         1        S 16.00 female     0     0   7.6500
## 606         1        S 25.00   male     0     0   7.6500
## 607         1        S 20.00   male     0     0   7.9250
## 608         1        C 18.00 female     0     0   7.2292
## 609         0        S 30.00   male     0     0   7.2500
## 610         0        S 26.00   male     0     0   8.0500
## 611         0        S 40.00 female     1     0   9.4750
## 612         1        S  0.83   male     0     1   9.3500
## 613         1        S 18.00 female     0     1   9.3500
## 614         1        C 26.00   male     0     0  18.7875
## 615         0        S 26.00   male     0     0   7.8875
## 616         0        S 20.00   male     0     0   7.9250
## 617         0        S 24.00   male     0     0   7.0500
## 618         0        S 25.00   male     0     0   7.0500
## 619         0        S 35.00   male     0     0   8.0500
## 620         0        S 18.00   male     0     0   8.3000
## 621         0        S 32.00   male     0     0  22.5250
## 622         1        S 19.00 female     1     0   7.8542
## 623         0        S  4.00   male     4     2  31.2750
## 624         0        S  6.00 female     4     2  31.2750
## 625         0        S  2.00 female     4     2  31.2750
## 626         1        S 17.00 female     4     2   7.9250
## 627         0        S 38.00 female     4     2   7.7750
## 628         0        S  9.00 female     4     2  31.2750
## 629         0        S 11.00 female     4     2  31.2750
## 630         0        S 39.00   male     1     5  31.2750
## 631         1        S 27.00   male     0     0   7.7958
## 632         0        S 26.00   male     0     0   7.7750
## 633         0        S 39.00 female     1     5  31.2750
## 634         0        S 20.00   male     0     0   7.8542
## 635         0        S 26.00   male     0     0   7.8958
## 636         0        S 25.00   male     1     0  17.8000
## 637         0        S 18.00 female     1     0  17.8000
## 638         0        S 24.00   male     0     0   7.7750
## 639         0        S 35.00   male     0     0   7.0500
## 640         0        S  5.00   male     4     2  31.3875
## 641         0        S  9.00   male     4     2  31.3875
## 642         1        S  3.00   male     4     2  31.3875
## 643         0        S 13.00   male     4     2  31.3875
## 644         1        S  5.00 female     4     2  31.3875
## 645         0        S 40.00   male     1     5  31.3875
## 646         1        S 23.00   male     0     0   7.7958
## 647         1        S 38.00 female     1     5  31.3875
## 648         1        C 45.00 female     0     0   7.2250
## 649         0        C 21.00   male     0     0   7.2250
## 650         0        S 23.00   male     0     0   7.0500
## 651         0        C 17.00 female     0     0  14.4583
## 652         0        C 30.00   male     0     0   7.2250
## 653         0        S 23.00   male     0     0   7.8542
## 654         1        C 13.00 female     0     0   7.2292
## 655         0        C 20.00   male     0     0   7.2250
## 656         0        S 32.00   male     1     0  15.8500
## 657         1        S 33.00 female     3     0  15.8500
## 658         1        C  0.75 female     2     1  19.2583
## 659         1        C  0.75 female     2     1  19.2583
## 660         1        C  5.00 female     2     1  19.2583
## 661         1        C 24.00 female     0     3  19.2583
## 662         1        S 18.00 female     0     0   8.0500
## 663         0        C 40.00   male     0     0   7.2250
## 664         0        S 26.00   male     0     0   7.8958
## 665         1        C 20.00   male     0     0   7.2292
## 666         0        C 18.00 female     0     1  14.4542
## 667         0        C 45.00 female     0     1  14.4542
## 668         0        Q 27.00 female     0     0   7.8792
## 669         0        S 22.00   male     0     0   8.0500
## 670         0        S 19.00   male     0     0   8.0500
## 671         0        S 26.00   male     0     0   7.7750
## 672         0        S 22.00   male     0     0   9.3500
## 673         0        C    NA   male     0     0   7.2292
## 674         0        C 20.00   male     0     0   4.0125
## 675         1        S 32.00   male     0     0  56.4958
## 676         0        S 21.00   male     0     0   7.7750
## 677         0        S 18.00   male     0     0   7.7500
## 678         0        S 26.00   male     0     0   7.8958
## 679         0        C  6.00   male     1     1  15.2458
## 680         0        C  9.00 female     1     1  15.2458
## 681         0        C    NA   male     0     0   7.2250
## 682         0        C    NA female     0     2  15.2458
## 683         0        Q    NA female     0     2   7.7500
## 684         0        Q 40.00   male     1     1  15.5000
## 685         0        Q 32.00 female     1     1  15.5000
## 686         0        S 21.00   male     0     0  16.1000
## 687         1        Q 22.00 female     0     0   7.7250
## 688         0        S 20.00 female     0     0   7.8542
## 689         0        S 29.00   male     1     0   7.0458
## 690         0        S 22.00   male     1     0   7.2500
## 691         0        S 22.00   male     0     0   7.7958
## 692         0        S 35.00   male     0     0   8.0500
## 693         0        Q 18.50 female     0     0   7.2833
## 694         1        Q 21.00   male     0     0   7.8208
## 695         0        Q 19.00   male     0     0   6.7500
## 696         0        Q 18.00 female     0     0   7.8792
## 697         0        S 21.00 female     0     0   8.6625
## 698         0        S 30.00 female     0     0   8.6625
## 699         0        S 18.00   male     0     0   8.6625
## 700         0        S 38.00   male     0     0   8.6625
## 701         0        S 17.00   male     0     0   8.6625
## 702         0        S 17.00   male     0     0   8.6625
## 703         0        Q 21.00 female     0     0   7.7500
## 704         0        Q 21.00   male     0     0   7.7500
## 705         0        S 21.00   male     0     0   8.0500
## 706         0        C    NA   male     1     0  14.4583
## 707         0        C    NA female     1     0  14.4583
## 708         0        S 28.00   male     0     0   7.7958
## 709         0        S 24.00   male     0     0   7.8542
## 710         1        Q 16.00 female     0     0   7.7500
## 711         0        Q 37.00 female     0     0   7.7500
## 712         0        S 28.00   male     0     0   7.2500
## 713         0        S 24.00   male     0     0   8.0500
## 714         0        Q 21.00   male     0     0   7.7333
## 715         1        S 32.00   male     0     0  56.4958
## 716         0        S 29.00   male     0     0   8.0500
## 717         0        C 26.00   male     1     0  14.4542
## 718         0        C 18.00   male     1     0  14.4542
## 719         0        S 20.00   male     0     0   7.0500
## 720         1        S 18.00   male     0     0   8.0500
## 721         0        Q 24.00   male     0     0   7.2500
## 722         0        S 36.00   male     0     0   7.4958
## 723         0        S 24.00   male     0     0   7.4958
## 724         0        Q 31.00   male     0     0   7.7333
## 725         0        Q 31.00   male     0     0   7.7500
## 726         1        Q 22.00 female     0     0   7.7500
## 727         0        Q 30.00 female     0     0   7.6292
## 728         0        Q 70.50   male     0     0   7.7500
## 729         0        S 43.00   male     0     0   8.0500
## 730         0        S 35.00   male     0     0   7.8958
## 731         0        S 27.00   male     0     0   7.8958
## 732         0        S 19.00   male     0     0   7.8958
## 733         0        S 30.00   male     0     0   8.0500
## 734         1        S  9.00   male     1     1  15.9000
## 735         1        S  3.00   male     1     1  15.9000
## 736         1        S 36.00 female     0     2  15.9000
## 737         0        S 59.00   male     0     0   7.2500
## 738         0        S 19.00   male     0     0   8.1583
## 739         1        S 17.00 female     0     1  16.1000
## 740         0        S 44.00   male     0     1  16.1000
## 741         0        S 17.00   male     0     0   8.6625
## 742         0        C 22.50   male     0     0   7.2250
## 743         1        S 45.00   male     0     0   8.0500
## 744         0        S 22.00 female     0     0  10.5167
## 745         0        S 19.00   male     0     0  10.1708
## 746         1        Q 30.00 female     0     0   6.9500
## 747         1        Q 29.00   male     0     0   7.7500
## 748         0        S  0.33   male     0     2  14.4000
## 749         0        S 34.00   male     1     1  14.4000
## 750         0        S 28.00 female     1     1  14.4000
## 751         0        S 27.00   male     0     0   7.8958
## 752         0        S 25.00   male     0     0   7.8958
## 753         0        S 24.00   male     2     0  24.1500
## 754         0        S 22.00   male     0     0   8.0500
## 755         0        S 21.00   male     2     0  24.1500
## 756         0        S 17.00   male     2     0   8.0500
## 757         0        S    NA   male     1     0  16.1000
## 758         1        S    NA female     1     0  16.1000
## 759         1        S 36.50   male     1     0  17.4000
## 760         1        S 36.00 female     1     0  17.4000
## 761         1        S 30.00   male     0     0   9.5000
## 762         0        S 16.00   male     0     0   9.5000
## 763         1        S  1.00   male     1     2  20.5750
## 764         1        S  0.17 female     1     2  20.5750
## 765         0        S 26.00   male     1     2  20.5750
## 766         1        S 33.00 female     1     2  20.5750
## 767         0        S 25.00   male     0     0   7.8958
## 768         0        S    NA   male     0     0   7.8958
## 769         0        S    NA   male     0     0   7.8958
## 770         0        S 22.00   male     0     0   7.2500
## 771         0        S 36.00   male     0     0   7.2500
## 772         1        Q 19.00 female     0     0   7.8792
## 773         0        S 17.00   male     0     0   7.8958
## 774         0        S 42.00   male     0     0   8.6625
## 775         0        S 43.00   male     0     0   7.8958
## 776         0        C    NA   male     0     0   7.2292
## 777         0        Q 32.00   male     0     0   7.7500
## 778         1        S 19.00   male     0     0   8.0500
## 779         1        S 30.00 female     0     0  12.4750
## 780         0        Q 24.00 female     0     0   7.7500
## 781         1        S 23.00 female     0     0   8.0500
## 782         0        C 33.00   male     0     0   7.8958
## 783         0        Q 65.00   male     0     0   7.7500
## 784         1        S 24.00   male     0     0   7.5500
## 785         0        S 23.00   male     1     0  13.9000
## 786         1        S 22.00 female     1     0  13.9000
## 787         0        S 18.00   male     0     0   7.7750
## 788         0        S 16.00   male     0     0   7.7750
## 789         0        S 45.00   male     0     0   6.9750
## 790         0        C    NA   male     0     0   7.2250
## 791         0        C 39.00   male     0     2   7.2292
## 792         0        C 17.00   male     1     1   7.2292
## 793         0        C 15.00   male     1     1   7.2292
## 794         0        S 47.00   male     0     0   7.2500
## 795         1        S  5.00 female     0     0  12.4750
## 796         0        C    NA   male     0     0   7.2250
## 797         0        S 40.50   male     0     0  15.1000
## 798         0        Q 40.50   male     0     0   7.7500
## 799         1        S    NA   male     0     0   7.0500
## 800         0        S 18.00   male     0     0   7.7958
## 801         0        Q    NA female     0     0   7.7500
## 802         0        Q    NA   male     0     0   7.7500
## 803         0        Q    NA   male     0     0   6.9500
## 804         0        Q 26.00   male     0     0   7.8792
## 805         0        Q    NA   male     0     0   7.7500
## 806         1        S    NA   male     0     0  56.4958
## 807         0        S 21.00 female     2     2  34.3750
## 808         0        S  9.00 female     2     2  34.3750
## 809         0        S    NA   male     0     0   8.0500
## 810         0        S 18.00   male     2     2  34.3750
## 811         0        S 16.00   male     1     3  34.3750
## 812         0        S 48.00 female     1     3  34.3750
## 813         0        Q    NA   male     0     0   7.7500
## 814         0        S    NA   male     0     0   7.2500
## 815         0        Q 25.00   male     0     0   7.7417
## 816         0        S    NA   male     0     0  14.5000
## 817         0        C    NA   male     0     0   7.8958
## 818         0        S 22.00   male     0     0   8.0500
## 819         1        Q 16.00 female     0     0   7.7333
## 820         1        Q    NA female     0     0   7.7500
## 821         1        S  9.00   male     0     2  20.5250
## 822         0        S 33.00   male     1     1  20.5250
## 823         0        S 41.00   male     0     0   7.8500
## 824         1        S 31.00 female     1     1  20.5250
## 825         0        S 38.00   male     0     0   7.0500
## 826         0        S  9.00   male     5     2  46.9000
## 827         0        S  1.00   male     5     2  46.9000
## 828         0        S 11.00   male     5     2  46.9000
## 829         0        S 10.00 female     5     2  46.9000
## 830         0        S 16.00 female     5     2  46.9000
## 831         0        S 14.00   male     5     2  46.9000
## 832         0        S 40.00   male     1     6  46.9000
## 833         0        S 43.00 female     1     6  46.9000
## 834         0        S 51.00   male     0     0   8.0500
## 835         0        S 32.00   male     0     0   8.3625
## 836         0        S    NA   male     0     0   8.0500
## 837         0        S 20.00   male     0     0   9.8458
## 838         0        S 37.00   male     2     0   7.9250
## 839         0        S 28.00   male     2     0   7.9250
## 840         0        S 19.00   male     0     0   7.7750
## 841         0        S 24.00 female     0     0   8.8500
## 842         0        Q 17.00 female     0     0   7.7333
## 843         0        S    NA   male     1     0  19.9667
## 844         0        S    NA   male     1     0  19.9667
## 845         0        S 28.00   male     1     0  15.8500
## 846         1        S 24.00 female     1     0  15.8500
## 847         0        S 20.00   male     0     0   9.5000
## 848         0        C 23.50   male     0     0   7.2292
## 849         0        S 41.00   male     2     0  14.1083
## 850         0        S 26.00   male     1     0   7.8542
## 851         0        S 21.00   male     0     0   7.8542
## 852         1        S 45.00 female     1     0  14.1083
## 853         0        S    NA female     0     0   7.5500
## 854         0        S 25.00   male     0     0   7.2500
## 855         0        Q    NA   male     0     0   6.8583
## 856         0        C 11.00   male     0     0  18.7875
## 857         1        Q    NA female     0     0   7.7500
## 858         1        S 27.00   male     0     0   6.9750
## 859         1        S    NA   male     0     0  56.4958
## 860         0        Q 18.00 female     0     0   6.7500
## 861         1        S 26.00 female     0     0   7.9250
## 862         0        S 23.00 female     0     0   7.9250
## 863         1        S 22.00 female     0     0   8.9625
## 864         0        S 28.00   male     0     0   7.8958
## 865         0        S 28.00 female     0     0   7.7750
## 866         0        Q    NA female     0     0   7.7500
## 867         1        S  2.00 female     0     1  12.2875
## 868         1        S 22.00 female     1     1  12.2875
## 869         0        S 43.00   male     0     0   6.4500
## 870         0        S 28.00   male     0     0  22.5250
## 871         1        S 27.00 female     0     0   7.9250
## 872         0        Q    NA   male     0     0   7.7500
## 873         1        S    NA female     0     0   8.0500
## 874         0        S 42.00   male     0     0   7.6500
## 875         1        S    NA   male     0     0   7.8875
## 876         0        C 30.00   male     0     0   7.2292
## 877         0        S    NA   male     0     0   7.8958
## 878         0        S 27.00 female     1     0   7.9250
## 879         0        S 25.00 female     1     0   7.9250
## 880         0        S    NA   male     0     0   7.8958
## 881         1        C 29.00   male     0     0   7.8958
## 882         1        S 21.00   male     0     0   7.7958
## 883         0        S    NA   male     0     0   7.0500
## 884         0        S 20.00   male     0     0   7.8542
## 885         0        S 48.00   male     0     0   7.8542
## 886         0        S 17.00   male     1     0   7.0542
## 887         1        Q    NA female     0     0   7.7500
## 888         1        S    NA   male     0     0   8.1125
## 889         0        S 34.00   male     0     0   6.4958
## 890         1        S 26.00   male     0     0   7.7750
## 891         0        S 22.00   male     0     0   7.7958
## 892         0        S 33.00   male     0     0   8.6542
## 893         0        S 31.00   male     0     0   7.7750
## 894         0        S 29.00   male     0     0   7.8542
## 895         1        S  4.00   male     1     1  11.1333
## 896         1        S  1.00 female     1     1  11.1333
## 897         0        S 49.00   male     0     0   0.0000
## 898         0        S 33.00   male     0     0   7.7750
## 899         0        S 19.00   male     0     0   0.0000
## 900         1        S 27.00 female     0     2  11.1333
## 901         0        S    NA   male     1     2  23.4500
## 902         0        S    NA female     1     2  23.4500
## 903         0        S    NA   male     1     2  23.4500
## 904         0        S    NA female     1     2  23.4500
## 905         0        S 23.00   male     0     0   7.8958
## 906         1        S 32.00   male     0     0   7.8542
## 907         0        S 27.00   male     0     0   7.8542
## 908         0        S 20.00 female     1     0   9.8250
## 909         0        S 21.00 female     1     0   9.8250
## 910         1        S 32.00   male     0     0   7.9250
## 911         0        S 17.00   male     0     0   7.1250
## 912         0        S 21.00   male     0     0   8.4333
## 913         0        S 30.00   male     0     0   7.8958
## 914         1        S 21.00   male     0     0   7.7958
## 915         0        S 33.00   male     0     0   7.8542
## 916         0        S 22.00   male     0     0   7.5208
## 917         1        C  4.00 female     0     1  13.4167
## 918         1        C 39.00   male     0     1  13.4167
## 919         0        C    NA   male     0     0   7.2292
## 920         0        C 18.50   male     0     0   7.2292
## 921         0        Q    NA   male     0     0   7.7500
## 922         0        S    NA   male     0     0   7.2500
## 923         1        Q    NA female     0     0   7.7500
## 924         1        Q    NA female     0     0   7.7500
## 925         0        Q 34.50   male     0     0   7.8292
## 926         0        S 44.00   male     0     0   8.0500
## 927         1        Q    NA   male     0     0   7.7500
## 928         0        C    NA   male     1     0  14.4542
## 929         0        C    NA female     1     0  14.4542
## 930         0        Q    NA   male     1     0   7.7500
## 931         0        Q    NA   male     1     0   7.7500
## 932         0        Q    NA   male     0     0   7.7375
## 933         0        S 22.00 female     2     0   8.6625
## 934         0        S 26.00   male     2     0   8.6625
## 935         1        S  4.00 female     0     2  22.0250
## 936         1        S 29.00   male     3     1  22.0250
## 937         1        S 26.00 female     1     1  22.0250
## 938         0        S  1.00 female     1     1  12.1833
## 939         0        S 18.00   male     1     1   7.8542
## 940         0        S 36.00 female     0     2  12.1833
## 941         0        C    NA   male     0     0   7.8958
## 942         1        C 25.00   male     0     0   7.2292
## 943         0        C    NA   male     0     0   7.2250
## 944         0        S 37.00 female     0     0   9.5875
## 945         0        S    NA   male     0     0   7.8958
## 946         1        S    NA   male     0     0  56.4958
## 947         0        S    NA   male     0     0  56.4958
## 948         1        S 22.00 female     0     0   7.2500
## 949         0        Q    NA   male     0     0   7.7500
## 950         1        S 26.00   male     0     0  56.4958
## 951         0        S 29.00   male     0     0   9.4833
## 952         0        S 29.00   male     0     0   7.7750
## 953         0        S 22.00   male     0     0   7.7750
## 954         1        C 22.00   male     0     0   7.2250
## 955         0        S    NA   male     3     1  25.4667
## 956         0        S    NA female     3     1  25.4667
## 957         0        S    NA female     3     1  25.4667
## 958         0        S    NA female     3     1  25.4667
## 959         0        S    NA female     0     4  25.4667
## 960         0        S 32.00   male     0     0   7.9250
## 961         0        C 34.50   male     0     0   6.4375
## 962         0        Q    NA female     1     0  15.5000
## 963         0        Q    NA   male     1     0  15.5000
## 964         0        S 36.00   male     0     0   0.0000
## 965         0        S 39.00   male     0     0  24.1500
## 966         0        S 24.00   male     0     0   9.5000
## 967         0        S 25.00 female     0     0   7.7750
## 968         0        S 45.00 female     0     0   7.7500
## 969         0        S 36.00   male     1     0  15.5500
## 970         0        S 30.00 female     1     0  15.5500
## 971         1        S 20.00   male     1     0   7.9250
## 972         0        Q    NA   male     0     0   7.8792
## 973         0        S 28.00   male     0     0  56.4958
## 974         0        S    NA   male     0     0   7.5500
## 975         0        S 30.00   male     1     0  16.1000
## 976         0        S 26.00 female     1     0  16.1000
## 977         0        S    NA   male     0     0   7.8792
## 978         0        S 20.50   male     0     0   7.2500
## 979         1        S 27.00   male     0     0   8.6625
## 980         0        S 51.00   male     0     0   7.0542
## 981         1        S 23.00 female     0     0   7.8542
## 982         1        S 32.00   male     0     0   7.5792
## 983         0        S    NA   male     0     0   7.8958
## 984         0        S    NA   male     0     0   7.5500
## 985         1        Q    NA female     0     0   7.7500
## 986         1        S 24.00   male     0     0   7.1417
## 987         0        S 22.00   male     0     0   7.1250
## 988         0        Q    NA female     0     0   7.8792
## 989         0        Q    NA   male     0     0   7.7500
## 990         0        S    NA   male     0     0   8.0500
## 991         0        S 29.00   male     0     0   7.9250
## 992         1        C    NA   male     0     0   7.2292
## 993         0        Q 30.50 female     0     0   7.7500
## 994         1        Q    NA female     0     0   7.7375
## 995         0        C    NA   male     0     0   7.2292
## 996         0        C 35.00   male     0     0   7.8958
## 997         0        S 33.00   male     0     0   7.8958
## 998         1        C    NA female     0     0   7.2250
## 999         0        C    NA   male     0     0   7.8958
## 1000        1        Q    NA female     0     0   7.7500
## 1001        1        Q    NA   male     0     0   7.7500
## 1002        1        Q    NA female     2     0  23.2500
## 1003        1        Q    NA female     2     0  23.2500
## 1004        1        Q    NA   male     2     0  23.2500
## 1005        1        Q    NA female     0     0   7.7875
## 1006        0        Q    NA   male     0     0  15.5000
## 1007        1        Q    NA female     0     0   7.8792
## 1008        1        Q 15.00 female     0     0   8.0292
## 1009        0        Q 35.00 female     0     0   7.7500
## 1010        0        Q    NA   male     0     0   7.7500
## 1011        0        S 24.00   male     1     0  16.1000
## 1012        0        S 19.00 female     1     0  16.1000
## 1013        0        Q    NA female     0     0   7.7500
## 1014        0        S    NA female     0     0   8.0500
## 1015        0        S    NA female     0     0   8.0500
## 1016        0        S 55.50   male     0     0   8.0500
## 1017        0        Q    NA   male     0     0   7.7500
## 1018        1        S 21.00   male     0     0   7.7750
## 1019        0        S    NA   male     0     0   8.0500
## 1020        0        S 24.00   male     0     0   7.8958
## 1021        0        S 21.00   male     0     0   7.8958
## 1022        0        S 28.00   male     0     0   7.8958
## 1023        0        S    NA   male     0     0   7.8958
## 1024        1        Q    NA female     0     0   7.8792
## 1025        0        S 25.00   male     0     0   7.6500
## 1026        1        S  6.00   male     0     1  12.4750
## 1027        1        S 27.00 female     0     1  12.4750
## 1028        0        S    NA   male     0     0   8.0500
## 1029        1        Q    NA female     1     0  24.1500
## 1030        0        Q    NA   male     1     0  24.1500
## 1031        0        Q    NA   male     0     0   8.4583
## 1032        0        S 34.00   male     0     0   8.0500
## 1033        0        Q    NA   male     0     0   7.7500
## 1034        1        S    NA   male     0     0   7.7750
## 1035        1        C    NA   male     1     1  15.2458
## 1036        1        C    NA   male     1     1  15.2458
## 1037        1        C    NA female     0     2  15.2458
## 1038        1        C    NA female     0     0   7.2292
## 1039        0        S    NA   male     0     0   8.0500
## 1040        1        Q    NA female     0     0   7.7333
## 1041        1        Q 24.00 female     0     0   7.7500
## 1042        0        S    NA   male     0     0   8.0500
## 1043        1        Q    NA female     1     0  15.5000
## 1044        1        Q    NA female     1     0  15.5000
## 1045        1        Q    NA female     0     0  15.5000
## 1046        0        S 18.00   male     0     0   7.7500
## 1047        0        S 22.00   male     0     0   7.8958
## 1048        1        C 15.00 female     0     0   7.2250
## 1049        1        C  1.00 female     0     2  15.7417
## 1050        1        C 20.00   male     1     1  15.7417
## 1051        1        C 19.00 female     1     1  15.7417
## 1052        0        S 33.00   male     0     0   8.0500
## 1053        0        S    NA   male     0     0   7.8958
## 1054        0        C    NA   male     0     0   7.2292
## 1055        0        Q    NA female     0     0   7.7500
## 1056        0        S    NA   male     0     0   7.8958
## 1057        1        C 12.00   male     1     0  11.2417
## 1058        1        C 14.00 female     1     0  11.2417
## 1059        0        S 29.00 female     0     0   7.9250
## 1060        0        S 28.00   male     0     0   8.0500
## 1061        1        S 18.00 female     0     0   7.7750
## 1062        1        S 26.00 female     0     0   7.8542
## 1063        0        S 21.00   male     0     0   7.8542
## 1064        0        S 41.00   male     0     0   7.1250
## 1065        1        S 39.00   male     0     0   7.9250
## 1066        0        S 21.00   male     0     0   7.8000
## 1067        0        C 28.50   male     0     0   7.2292
## 1068        1        S 22.00 female     0     0   7.7500
## 1069        0        S 61.00   male     0     0   6.2375
## 1070        0        Q    NA   male     1     0  15.5000
## 1071        0        Q    NA   male     0     0   7.8292
## 1072        1        Q    NA female     1     0  15.5000
## 1073        0        Q    NA   male     0     0   7.7333
## 1074        0        Q    NA   male     0     0   7.7500
## 1075        0        Q    NA   male     0     0   7.7500
## 1076        0        S 23.00   male     0     0   9.2250
## 1077        0        Q    NA female     0     0   7.7500
## 1078        1        Q    NA female     0     0   7.7500
## 1079        1        Q    NA female     0     0   7.8792
## 1080        1        S 22.00 female     0     0   7.7750
## 1081        1        Q    NA   male     0     0   7.7500
## 1082        1        Q    NA female     0     0   7.8292
## 1083        1        S  9.00   male     0     1   3.1708
## 1084        0        S 28.00   male     0     0  22.5250
## 1085        0        S 42.00   male     0     1   8.4042
## 1086        0        S    NA   male     0     0   7.3125
## 1087        0        S 31.00 female     0     0   7.8542
## 1088        0        S 28.00   male     0     0   7.8542
## 1089        1        S 32.00   male     0     0   7.7750
## 1090        0        S 20.00   male     0     0   9.2250
## 1091        0        S 23.00 female     0     0   8.6625
## 1092        0        S 20.00 female     0     0   8.6625
## 1093        0        S 20.00   male     0     0   8.6625
## 1094        0        S 16.00   male     0     0   9.2167
## 1095        1        S 31.00 female     0     0   8.6833
## 1096        0        Q    NA female     0     0   7.6292
## 1097        0        S  2.00   male     3     1  21.0750
## 1098        0        S  6.00   male     3     1  21.0750
## 1099        0        S  3.00 female     3     1  21.0750
## 1100        0        S  8.00 female     3     1  21.0750
## 1101        0        S 29.00 female     0     4  21.0750
## 1102        0        S  1.00   male     4     1  39.6875
## 1103        0        S  7.00   male     4     1  39.6875
## 1104        0        S  2.00   male     4     1  39.6875
## 1105        0        S 16.00   male     4     1  39.6875
## 1106        0        S 14.00   male     4     1  39.6875
## 1107        0        S 41.00 female     0     5  39.6875
## 1108        0        S 21.00   male     0     0   8.6625
## 1109        0        S 19.00   male     0     0  14.5000
## 1110        0        C    NA   male     0     0   8.7125
## 1111        0        S 32.00   male     0     0   7.8958
## 1112        0        S  0.75   male     1     1  13.7750
## 1113        0        S  3.00 female     1     1  13.7750
## 1114        0        S 26.00 female     0     2  13.7750
## 1115        0        S    NA   male     0     0   7.0000
## 1116        0        S    NA   male     0     0   7.7750
## 1117        0        S    NA   male     0     0   8.0500
## 1118        0        S 21.00   male     0     0   7.9250
## 1119        0        S 25.00   male     0     0   7.9250
## 1120        0        S 22.00   male     0     0   7.2500
## 1121        1        S 25.00   male     1     0   7.7750
## 1122        1        C    NA   male     1     1  22.3583
## 1123        1        C    NA female     1     1  22.3583
## 1124        1        C    NA female     0     2  22.3583
## 1125        0        Q    NA female     0     0   8.1375
## 1126        0        S 24.00   male     0     0   8.0500
## 1127        0        S 28.00 female     0     0   7.8958
## 1128        0        S 19.00   male     0     0   7.8958
## 1129        0        S    NA   male     0     0   7.8958
## 1130        0        S 25.00   male     1     0   7.7750
## 1131        0        S 18.00 female     0     0   7.7750
## 1132        1        S 32.00   male     0     0   8.0500
## 1133        0        S    NA   male     0     0   7.8958
## 1134        0        S 17.00   male     0     0   8.6625
## 1135        0        S 24.00   male     0     0   8.6625
## 1136        0        S    NA   male     0     0   7.8958
## 1137        0        S    NA female     0     0   8.1125
## 1138        0        C    NA   male     0     0   7.2292
## 1139        0        S    NA   male     0     0   7.2500
## 1140        0        S 38.00   male     0     0   7.8958
## 1141        0        S 21.00   male     0     0   8.0500
## 1142        0        Q 10.00   male     4     1  29.1250
## 1143        0        Q  4.00   male     4     1  29.1250
## 1144        0        Q  7.00   male     4     1  29.1250
## 1145        0        Q  2.00   male     4     1  29.1250
## 1146        0        Q  8.00   male     4     1  29.1250
## 1147        0        Q 39.00 female     0     5  29.1250
## 1148        0        S 22.00 female     0     0  39.6875
## 1149        0        S 35.00   male     0     0   7.1250
## 1150        1        Q    NA female     0     0   7.7208
## 1151        0        S    NA   male     0     0  14.5000
## 1152        0        S    NA female     0     0  14.5000
## 1153        0        S 50.00   male     1     0  14.5000
## 1154        0        S 47.00 female     1     0  14.5000
## 1155        0        S    NA   male     0     0   8.0500
## 1156        0        S    NA   male     0     0   7.7750
## 1157        0        S  2.00 female     1     1  20.2125
## 1158        0        S 18.00   male     1     1  20.2125
## 1159        0        S 41.00 female     0     2  20.2125
## 1160        1        S    NA female     0     0   8.0500
## 1161        0        S 50.00   male     0     0   8.0500
## 1162        0        S 16.00   male     0     0   8.0500
## 1163        1        Q    NA   male     0     0   7.7500
## 1164        0        Q    NA   male     0     0  24.1500
## 1165        0        C    NA   male     0     0   7.2292
## 1166        0        C 25.00   male     0     0   7.2250
## 1167        0        C    NA   male     0     0   7.2250
## 1168        0        Q    NA   male     0     0   7.7292
## 1169        0        S    NA   male     0     0   7.5750
## 1170        0        S 38.50   male     0     0   7.2500
## 1171        0        S    NA   male     8     2  69.5500
## 1172        0        S 14.50   male     8     2  69.5500
## 1173        0        S    NA female     8     2  69.5500
## 1174        0        S    NA female     8     2  69.5500
## 1175        0        S    NA female     8     2  69.5500
## 1176        0        S    NA female     8     2  69.5500
## 1177        0        S    NA   male     8     2  69.5500
## 1178        0        S    NA   male     8     2  69.5500
## 1179        0        S    NA   male     8     2  69.5500
## 1180        0        S    NA   male     1     9  69.5500
## 1181        0        S    NA female     1     9  69.5500
## 1182        0        S 24.00   male     0     0   9.3250
## 1183        1        S 21.00 female     0     0   7.6500
## 1184        0        S 39.00   male     0     0   7.9250
## 1185        0        C    NA   male     2     0  21.6792
## 1186        0        C    NA   male     2     0  21.6792
## 1187        0        C    NA   male     2     0  21.6792
## 1188        1        S  1.00 female     1     1  16.7000
## 1189        1        S 24.00 female     0     2  16.7000
## 1190        1        S  4.00 female     1     1  16.7000
## 1191        1        S 25.00   male     0     0   9.5000
## 1192        0        S 20.00   male     0     0   8.0500
## 1193        0        S 24.50   male     0     0   8.0500
## 1194        0        Q    NA   male     0     0   7.7250
## 1195        0        S    NA   male     0     0   7.8958
## 1196        0        Q    NA   male     0     0   7.7500
## 1197        1        S 29.00   male     0     0   9.5000
## 1198        0        S    NA   male     0     0  15.1000
## 1199        1        Q    NA female     0     0   7.7792
## 1200        0        S    NA   male     0     0   8.0500
## 1201        0        S    NA   male     0     0   8.0500
## 1202        0        C 22.00   male     0     0   7.2292
## 1203        0        S    NA   male     0     0   8.0500
## 1204        0        S 40.00   male     0     0   7.8958
## 1205        0        S 21.00   male     0     0   7.9250
## 1206        1        S 18.00 female     0     0   7.4958
## 1207        0        S  4.00   male     3     2  27.9000
## 1208        0        S 10.00   male     3     2  27.9000
## 1209        0        S  9.00 female     3     2  27.9000
## 1210        0        S  2.00 female     3     2  27.9000
## 1211        0        S 40.00   male     1     4  27.9000
## 1212        0        S 45.00 female     1     4  27.9000
## 1213        0        S    NA   male     0     0   7.8958
## 1214        0        S    NA   male     0     0   8.0500
## 1215        0        S    NA   male     0     0   8.6625
## 1216        0        Q    NA   male     0     0   7.7500
## 1217        1        Q    NA female     0     0   7.7333
## 1218        0        S 19.00   male     0     0   7.6500
## 1219        0        S 30.00   male     0     0   8.0500
## 1220        0        S    NA   male     0     0   8.0500
## 1221        0        S 32.00   male     0     0   8.0500
## 1222        0        S    NA   male     0     0   7.8958
## 1223        0        C 33.00   male     0     0   8.6625
## 1224        1        S 23.00 female     0     0   7.5500
## 1225        0        S 21.00   male     0     0   8.0500
## 1226        0        S 60.50   male     0     0       NA
## 1227        0        S 19.00   male     0     0   7.8958
## 1228        0        S 22.00 female     0     0   9.8375
## 1229        1        S 31.00   male     0     0   7.9250
## 1230        0        S 27.00   male     0     0   8.6625
## 1231        0        S  2.00 female     0     1  10.4625
## 1232        0        S 29.00 female     1     1  10.4625
## 1233        1        S 16.00   male     0     0   8.0500
## 1234        1        S 44.00   male     0     0   7.9250
## 1235        0        S 25.00   male     0     0   7.0500
## 1236        0        S 74.00   male     0     0   7.7750
## 1237        1        S 14.00   male     0     0   9.2250
## 1238        0        S 24.00   male     0     0   7.7958
## 1239        1        S 25.00   male     0     0   7.7958
## 1240        0        S 34.00   male     0     0   8.0500
## 1241        1        C  0.42   male     0     1   8.5167
## 1242        0        C    NA   male     1     0   6.4375
## 1243        0        C    NA   male     0     0   6.4375
## 1244        0        C    NA   male     0     0   7.2250
## 1245        1        C 16.00 female     1     1   8.5167
## 1246        0        S    NA   male     0     0   8.0500
## 1247        0        S    NA   male     1     0  16.1000
## 1248        1        S    NA female     1     0  16.1000
## 1249        0        S 32.00   male     0     0   7.9250
## 1250        0        Q    NA   male     0     0   7.7500
## 1251        0        S    NA   male     0     0   7.8958
## 1252        0        S 30.50   male     0     0   8.0500
## 1253        0        S 44.00   male     0     0   8.0500
## 1254        0        C    NA   male     0     0   7.2292
## 1255        1        S 25.00   male     0     0   0.0000
## 1256        0        C    NA   male     0     0   7.2292
## 1257        1        C  7.00   male     1     1  15.2458
## 1258        1        C  9.00 female     1     1  15.2458
## 1259        1        C 29.00 female     0     2  15.2458
## 1260        0        S 36.00   male     0     0   7.8958
## 1261        1        S 18.00 female     0     0   9.8417
## 1262        1        S 63.00 female     0     0   9.5875
## 1263        0        S    NA   male     1     1  14.5000
## 1264        0        S 11.50   male     1     1  14.5000
## 1265        0        S 40.50   male     0     2  14.5000
## 1266        0        S 10.00 female     0     2  24.1500
## 1267        0        S 36.00   male     1     1  24.1500
## 1268        0        S 30.00 female     1     1  24.1500
## 1269        0        S    NA   male     0     0   9.5000
## 1270        0        S 33.00   male     0     0   9.5000
## 1271        0        S 28.00   male     0     0   9.5000
## 1272        0        S 28.00   male     0     0   9.5000
## 1273        0        S 47.00   male     0     0   9.0000
## 1274        0        S 18.00 female     2     0  18.0000
## 1275        0        S 31.00   male     3     0  18.0000
## 1276        0        S 16.00   male     2     0  18.0000
## 1277        0        S 31.00 female     1     0  18.0000
## 1278        1        C 22.00   male     0     0   7.2250
## 1279        0        S 20.00   male     0     0   7.8542
## 1280        0        S 14.00 female     0     0   7.8542
## 1281        0        S 22.00   male     0     0   7.8958
## 1282        0        S 22.00   male     0     0   9.0000
## 1283        0        S    NA   male     0     0   8.0500
## 1284        0        S    NA   male     0     0   7.5500
## 1285        0        S    NA   male     0     0   8.0500
## 1286        0        S 32.50   male     0     0   9.5000
## 1287        1        C 38.00 female     0     0   7.2292
## 1288        0        S 51.00   male     0     0   7.7500
## 1289        0        S 18.00   male     1     0   6.4958
## 1290        0        S 21.00   male     1     0   6.4958
## 1291        1        S 47.00 female     1     0   7.0000
## 1292        0        S    NA   male     0     0   8.7125
## 1293        0        S    NA   male     0     0   7.5500
## 1294        0        S    NA   male     0     0   8.0500
## 1295        0        S 28.50   male     0     0  16.1000
## 1296        0        S 21.00   male     0     0   7.2500
## 1297        0        S 27.00   male     0     0   8.6625
## 1298        0        S    NA   male     0     0   7.2500
## 1299        0        S 36.00   male     0     0   9.5000
## 1300        0        C 27.00   male     1     0  14.4542
## 1301        1        C 15.00 female     1     0  14.4542
## 1302        0        C 45.50   male     0     0   7.2250
## 1303        0        C    NA   male     0     0   7.2250
## 1304        0        C    NA   male     0     0  14.4583
## 1305        0        C 14.50 female     1     0  14.4542
## 1306        0        C    NA female     1     0  14.4542
## 1307        0        C 26.50   male     0     0   7.2250
## 1308        0        C 27.00   male     0     0   7.2250
## 1309        0        S 29.00   male     0     0   7.8750
#4) Perform a statistical analysis of the titanic dataset.
View(titanic)#View the new table
# Display the first few rows of the new dataset
head(titanic)#displays the first few rows of a dataset
##   survived embarked   age    sex sibsp parch     fare
## 1        1        S 29.00 female     0     0 211.3375
## 2        1        S  0.92   male     1     2 151.5500
## 3        0        S  2.00 female     1     2 151.5500
## 4        0        S 30.00   male     1     2 151.5500
## 5        0        S 25.00 female     1     2 151.5500
## 6        1        S 48.00   male     0     0  26.5500
tail(titanic)#displays the last few rows of a dataset
##      survived embarked  age    sex sibsp parch    fare
## 1304        0        C   NA   male     0     0 14.4583
## 1305        0        C 14.5 female     1     0 14.4542
## 1306        0        C   NA female     1     0 14.4542
## 1307        0        C 26.5   male     0     0  7.2250
## 1308        0        C 27.0   male     0     0  7.2250
## 1309        0        S 29.0   male     0     0  7.8750
summary(titanic)#provides a concise summary of the variables 
##     survived       embarked              age            sex           
##  Min.   :0.000   Length:1309        Min.   : 0.17   Length:1309       
##  1st Qu.:0.000   Class :character   1st Qu.:21.00   Class :character  
##  Median :0.000   Mode  :character   Median :28.00   Mode  :character  
##  Mean   :0.382                      Mean   :29.88                     
##  3rd Qu.:1.000                      3rd Qu.:39.00                     
##  Max.   :1.000                      Max.   :80.00                     
##                                     NA's   :263                       
##      sibsp            parch            fare        
##  Min.   :0.0000   Min.   :0.000   Min.   :  0.000  
##  1st Qu.:0.0000   1st Qu.:0.000   1st Qu.:  7.896  
##  Median :0.0000   Median :0.000   Median : 14.454  
##  Mean   :0.4989   Mean   :0.385   Mean   : 33.295  
##  3rd Qu.:1.0000   3rd Qu.:0.000   3rd Qu.: 31.275  
##  Max.   :8.0000   Max.   :9.000   Max.   :512.329  
##                                   NA's   :1
str(titanic)
## 'data.frame':    1309 obs. of  7 variables:
##  $ survived: int  1 1 0 0 0 1 1 0 1 0 ...
##  $ embarked: chr  "S" "S" "S" "S" ...
##  $ age     : num  29 0.92 2 30 25 48 63 39 53 71 ...
##  $ sex     : chr  "female" "male" "female" "male" ...
##  $ sibsp   : int  0 1 1 1 1 0 1 0 2 0 ...
##  $ parch   : int  0 2 2 2 2 0 0 0 0 0 ...
##  $ fare    : num  211 152 152 152 152 ...
dim(titanic)#gives you the dimensions (number of rows and columns)
## [1] 1309    7
names(titanic)# retrieves the name of the variable
## [1] "survived" "embarked" "age"      "sex"      "sibsp"    "parch"    "fare"
install.packages("knitr")
## Installing package into 'C:/Users/Home/AppData/Local/R/win-library/4.3'
## (as 'lib' is unspecified)
## package 'knitr' successfully unpacked and MD5 sums checked
## 
## The downloaded binary packages are in
##  C:\Users\Home\AppData\Local\Temp\RtmpqyR593\downloaded_packages
# Remove rows with NA values
titanic <- na.omit(titanic)
knitr::kable(titanic) #displays the new datafram "titanic" separately in a proper and more bold view
survived embarked age sex sibsp parch fare
1 1 S 29.00 female 0 0 211.3375
2 1 S 0.92 male 1 2 151.5500
3 0 S 2.00 female 1 2 151.5500
4 0 S 30.00 male 1 2 151.5500
5 0 S 25.00 female 1 2 151.5500
6 1 S 48.00 male 0 0 26.5500
7 1 S 63.00 female 1 0 77.9583
8 0 S 39.00 male 0 0 0.0000
9 1 S 53.00 female 2 0 51.4792
10 0 C 71.00 male 0 0 49.5042
11 0 C 47.00 male 1 0 227.5250
12 1 C 18.00 female 1 0 227.5250
13 1 C 24.00 female 0 0 69.3000
14 1 S 26.00 female 0 0 78.8500
15 1 S 80.00 male 0 0 30.0000
17 0 C 24.00 male 0 1 247.5208
18 1 C 50.00 female 0 1 247.5208
19 1 C 32.00 female 0 0 76.2917
20 0 C 36.00 male 0 0 75.2417
21 1 S 37.00 male 1 1 52.5542
22 1 S 47.00 female 1 1 52.5542
23 1 C 26.00 male 0 0 30.0000
24 1 C 42.00 female 0 0 227.5250
25 1 S 29.00 female 0 0 221.7792
26 0 C 25.00 male 0 0 26.0000
27 1 C 25.00 male 1 0 91.0792
28 1 C 19.00 female 1 0 91.0792
29 1 S 35.00 female 0 0 135.6333
30 1 S 28.00 male 0 0 26.5500
31 0 S 45.00 male 0 0 35.5000
32 1 C 40.00 male 0 0 31.0000
33 1 S 30.00 female 0 0 164.8667
34 1 S 58.00 female 0 0 26.5500
35 0 S 42.00 male 0 0 26.5500
36 1 C 45.00 female 0 0 262.3750
37 1 S 22.00 female 0 1 55.0000
39 0 S 41.00 male 0 0 30.5000
40 0 C 48.00 male 0 0 50.4958
42 1 C 44.00 female 0 0 27.7208
43 1 S 59.00 female 2 0 51.4792
44 1 C 60.00 female 0 0 76.2917
45 1 C 41.00 female 0 0 134.5000
46 0 S 45.00 male 0 0 26.5500
48 1 S 42.00 male 0 0 26.2875
49 1 C 53.00 female 0 0 27.4458
50 1 C 36.00 male 0 1 512.3292
51 1 C 58.00 female 0 1 512.3292
52 0 S 33.00 male 0 0 5.0000
53 0 S 28.00 male 0 0 47.1000
54 0 S 17.00 male 0 0 47.1000
55 1 S 11.00 male 1 2 120.0000
56 1 S 14.00 female 1 2 120.0000
57 1 S 36.00 male 1 2 120.0000
58 1 S 36.00 female 1 2 120.0000
59 0 S 49.00 male 0 0 26.0000
61 0 S 36.00 male 1 0 78.8500
62 1 S 76.00 female 1 0 78.8500
63 0 S 46.00 male 1 0 61.1750
64 1 S 47.00 female 1 0 61.1750
65 1 S 27.00 male 1 0 53.1000
66 1 S 33.00 female 1 0 53.1000
67 1 C 36.00 female 0 0 262.3750
68 1 S 30.00 female 0 0 86.5000
69 1 C 45.00 male 0 0 29.7000
72 0 C 27.00 male 1 0 136.7792
73 1 C 26.00 female 1 0 136.7792
74 1 S 22.00 female 0 0 151.5500
76 0 S 47.00 male 0 0 25.5875
77 1 C 39.00 female 1 1 83.1583
78 0 C 37.00 male 1 1 83.1583
79 1 C 64.00 female 0 2 83.1583
80 1 S 55.00 female 2 0 25.7000
82 0 S 70.00 male 1 1 71.0000
83 1 S 36.00 female 0 2 71.0000
84 1 S 64.00 female 1 1 26.5500
85 0 C 39.00 male 1 0 71.2833
86 1 C 38.00 female 1 0 71.2833
87 1 S 51.00 male 0 0 26.5500
88 1 S 27.00 male 0 0 30.5000
89 1 S 33.00 female 0 0 151.5500
90 0 S 31.00 male 1 0 52.0000
91 1 S 27.00 female 1 2 52.0000
92 1 S 31.00 male 1 0 57.0000
93 1 S 17.00 female 1 0 57.0000
94 1 S 53.00 male 1 1 81.8583
95 1 S 4.00 male 0 2 81.8583
96 1 S 54.00 female 1 1 81.8583
97 0 C 50.00 male 1 0 106.4250
98 1 C 27.00 female 1 1 247.5208
99 1 C 48.00 female 1 0 106.4250
100 1 C 48.00 female 1 0 39.6000
101 1 C 49.00 male 1 0 56.9292
102 0 C 39.00 male 0 0 29.7000
103 1 C 23.00 female 0 1 83.1583
104 1 C 38.00 female 0 0 227.5250
105 1 C 54.00 female 1 0 78.2667
106 0 C 36.00 female 0 0 31.6792
110 1 S 36.00 male 0 0 26.3875
111 0 C 30.00 male 0 0 27.7500
112 1 S 24.00 female 3 2 263.0000
113 1 S 28.00 female 3 2 263.0000
114 1 S 23.00 female 3 2 263.0000
115 0 S 19.00 male 3 2 263.0000
116 0 S 64.00 male 1 4 263.0000
117 1 S 60.00 female 1 4 263.0000
118 1 C 30.00 female 0 0 56.9292
120 1 S 50.00 male 2 0 133.6500
121 1 C 43.00 male 1 0 27.7208
123 1 C 22.00 female 0 2 49.5000
124 1 C 60.00 male 1 1 79.2000
125 1 C 48.00 female 1 1 79.2000
127 0 S 37.00 male 1 0 53.1000
128 1 S 35.00 female 1 0 53.1000
129 0 S 47.00 male 0 0 38.5000
130 1 C 35.00 female 0 0 211.5000
131 1 C 22.00 female 0 1 59.4000
132 1 C 45.00 female 0 1 59.4000
133 0 C 24.00 male 0 0 79.2000
134 1 C 49.00 male 1 0 89.1042
136 0 C 71.00 male 0 0 34.6542
137 1 C 53.00 male 0 0 28.5000
138 1 S 19.00 female 0 0 30.0000
139 0 S 38.00 male 0 1 153.4625
140 1 S 58.00 female 0 1 153.4625
141 1 C 23.00 male 0 1 63.3583
142 1 C 45.00 female 0 1 63.3583
143 0 C 46.00 male 0 0 79.2000
144 1 C 25.00 male 1 0 55.4417
145 1 C 25.00 female 1 0 55.4417
146 1 C 48.00 male 1 0 76.7292
147 1 C 49.00 female 1 0 76.7292
149 0 S 45.00 male 1 0 83.4750
150 1 S 35.00 female 1 0 83.4750
151 0 S 40.00 male 0 0 0.0000
152 1 C 27.00 male 0 0 76.7292
154 1 C 24.00 female 0 0 83.1583
155 0 S 55.00 male 1 1 93.5000
156 1 S 52.00 female 1 1 93.5000
157 0 S 42.00 male 0 0 42.5000
159 0 S 55.00 male 0 0 50.0000
160 1 C 16.00 female 0 1 57.9792
161 1 C 44.00 female 0 1 57.9792
162 1 S 51.00 female 1 0 77.9583
163 0 S 42.00 male 1 0 52.0000
164 1 S 35.00 female 1 0 52.0000
165 1 C 35.00 male 0 0 26.5500
166 1 S 38.00 male 1 0 90.0000
168 1 S 35.00 female 1 0 90.0000
170 0 C 50.00 female 0 0 28.7125
171 1 S 49.00 male 0 0 0.0000
172 0 S 46.00 male 0 0 26.0000
173 0 S 50.00 male 0 0 26.0000
174 0 C 32.50 male 0 0 211.5000
175 0 C 58.00 male 0 0 29.7000
176 0 S 41.00 male 1 0 51.8625
178 1 S 42.00 male 1 0 52.5542
179 1 S 45.00 female 1 0 52.5542
181 1 S 39.00 female 0 0 211.3375
182 1 S 49.00 female 0 0 25.9292
183 1 C 30.00 female 0 0 106.4250
184 1 C 35.00 male 0 0 512.3292
186 0 S 42.00 male 0 0 26.5500
187 1 C 55.00 female 0 0 27.7208
188 1 S 16.00 female 0 1 39.4000
189 1 S 51.00 female 0 1 39.4000
190 0 S 29.00 male 0 0 30.0000
191 1 S 21.00 female 0 0 77.9583
192 0 S 30.00 male 0 0 45.5000
193 1 C 58.00 female 0 0 146.5208
194 1 S 15.00 female 0 1 211.3375
195 0 S 30.00 male 0 0 26.0000
196 1 S 16.00 female 0 0 86.5000
198 0 S 19.00 male 1 0 53.1000
199 1 S 18.00 female 1 0 53.1000
200 1 C 24.00 female 0 0 49.5042
201 0 C 46.00 male 0 0 75.2417
202 0 S 54.00 male 0 0 51.8625
203 1 S 36.00 male 0 0 26.2875
204 0 C 28.00 male 1 0 82.1708
206 0 S 65.00 male 0 0 26.5500
207 0 Q 44.00 male 2 0 90.0000
208 1 Q 33.00 female 1 0 90.0000
209 1 Q 37.00 female 1 0 90.0000
210 1 C 30.00 male 1 0 57.7500
211 0 S 55.00 male 0 0 30.5000
212 0 S 47.00 male 0 0 42.4000
213 0 C 37.00 male 0 1 29.7000
214 1 C 31.00 female 1 0 113.2750
215 1 C 23.00 female 1 0 113.2750
216 0 C 58.00 male 0 2 113.2750
217 1 S 19.00 female 0 2 26.2833
218 0 S 64.00 male 0 0 26.0000
219 1 C 39.00 female 0 0 108.9000
221 1 C 22.00 female 0 1 61.9792
222 0 C 65.00 male 0 1 61.9792
223 0 C 28.50 male 0 0 27.7208
225 0 S 45.50 male 0 0 28.5000
226 0 S 23.00 male 0 0 93.5000
227 0 S 29.00 male 1 0 66.6000
228 1 S 22.00 female 1 0 66.6000
229 0 C 18.00 male 1 0 108.9000
230 1 C 17.00 female 1 0 108.9000
231 1 S 30.00 female 0 0 93.5000
232 1 S 52.00 male 0 0 30.5000
233 0 S 47.00 male 0 0 52.0000
234 1 C 56.00 female 0 1 83.1583
235 0 S 38.00 male 0 0 0.0000
237 0 C 22.00 male 0 0 135.6333
239 1 S 43.00 female 0 1 211.3375
240 0 S 31.00 male 0 0 50.4958
241 1 S 45.00 male 0 0 26.5500
243 1 C 33.00 female 0 0 27.7208
244 0 C 46.00 male 0 0 79.2000
245 0 C 36.00 male 0 0 40.1250
246 1 S 33.00 female 0 0 86.5000
247 0 C 55.00 male 1 0 59.4000
248 1 C 54.00 female 1 0 59.4000
249 0 S 33.00 male 0 0 26.5500
250 1 C 13.00 male 2 2 262.3750
251 1 C 18.00 female 2 2 262.3750
252 1 C 21.00 female 2 2 262.3750
253 0 C 61.00 male 1 3 262.3750
254 1 C 48.00 female 1 3 262.3750
256 1 C 24.00 female 0 0 69.3000
258 1 C 35.00 female 1 0 57.7500
259 1 C 30.00 female 0 0 31.0000
260 1 S 34.00 male 0 0 26.5500
261 1 S 40.00 female 0 0 153.4625
262 1 S 35.00 male 0 0 26.2875
263 0 S 50.00 male 1 0 55.9000
264 1 S 39.00 female 1 0 55.9000
265 1 C 56.00 male 0 0 35.5000
266 1 S 28.00 male 0 0 35.5000
267 0 S 56.00 male 0 0 26.5500
268 0 C 56.00 male 0 0 30.6958
269 0 S 24.00 male 1 0 60.0000
271 1 S 18.00 female 1 0 60.0000
272 1 S 24.00 male 1 0 82.2667
273 1 S 23.00 female 1 0 82.2667
274 1 C 6.00 male 0 2 134.5000
275 1 C 45.00 male 1 1 134.5000
276 1 C 40.00 female 1 1 134.5000
277 0 C 57.00 male 1 0 146.5208
279 1 C 32.00 male 0 0 30.5000
280 0 S 62.00 male 0 0 26.5500
281 1 C 54.00 male 1 0 55.4417
282 1 C 43.00 female 1 0 55.4417
283 1 C 52.00 female 1 0 78.2667
286 0 S 67.00 male 1 0 221.7792
287 0 S 63.00 female 1 0 221.7792
288 0 S 61.00 male 0 0 32.3208
289 1 S 48.00 female 0 0 25.9292
290 1 S 18.00 female 0 2 79.6500
291 0 S 52.00 male 1 1 79.6500
292 1 S 39.00 female 1 1 79.6500
293 1 S 48.00 male 1 0 52.0000
295 0 C 49.00 male 1 1 110.8833
296 1 C 17.00 male 0 2 110.8833
297 1 C 39.00 female 1 1 110.8833
299 1 C 31.00 male 0 0 28.5375
300 0 C 40.00 male 0 0 27.7208
301 0 S 61.00 male 0 0 33.5000
302 0 S 47.00 male 0 0 34.0208
303 1 C 35.00 female 0 0 512.3292
304 0 C 64.00 male 1 0 75.2500
305 1 C 60.00 female 1 0 75.2500
306 0 S 60.00 male 0 0 26.5500
307 0 S 54.00 male 0 1 77.2875
308 0 S 21.00 male 0 1 77.2875
309 1 C 55.00 female 0 0 135.6333
310 1 S 31.00 female 0 2 164.8667
311 0 S 57.00 male 1 1 164.8667
312 1 S 45.00 female 1 1 164.8667
313 0 C 50.00 male 1 1 211.5000
314 0 C 27.00 male 0 2 211.5000
315 1 C 50.00 female 1 1 211.5000
316 1 S 21.00 female 0 0 26.5500
317 0 C 51.00 male 0 1 61.3792
318 1 C 21.00 male 0 1 61.3792
320 1 C 31.00 female 0 0 134.5000
322 0 S 62.00 male 0 0 26.5500
323 1 C 36.00 female 0 0 135.6333
324 0 C 30.00 male 1 0 24.0000
325 1 C 28.00 female 1 0 24.0000
326 0 S 30.00 male 0 0 13.0000
327 0 S 18.00 male 0 0 11.5000
328 0 S 25.00 male 0 0 10.5000
329 0 S 34.00 male 1 0 26.0000
330 1 S 36.00 female 1 0 26.0000
331 0 S 57.00 male 0 0 13.0000
332 0 S 18.00 male 0 0 11.5000
333 0 S 23.00 male 0 0 10.5000
334 1 S 36.00 female 0 0 13.0000
335 0 S 28.00 male 0 0 10.5000
336 0 S 51.00 male 0 0 12.5250
337 1 S 32.00 male 1 0 26.0000
338 1 S 19.00 female 1 0 26.0000
339 0 S 28.00 male 0 0 26.0000
340 1 S 1.00 male 2 1 39.0000
341 1 S 4.00 female 2 1 39.0000
342 1 S 12.00 female 2 1 39.0000
343 1 S 36.00 female 0 3 39.0000
344 1 S 34.00 male 0 0 13.0000
345 1 S 19.00 female 0 0 13.0000
346 0 S 23.00 male 0 0 13.0000
347 0 S 26.00 male 0 0 13.0000
348 0 S 42.00 male 0 0 13.0000
349 0 S 27.00 male 0 0 13.0000
350 1 S 24.00 female 0 0 13.0000
351 1 S 15.00 female 0 2 39.0000
352 0 S 60.00 male 1 1 39.0000
353 1 S 40.00 female 1 1 39.0000
354 1 S 20.00 female 1 0 26.0000
355 0 S 25.00 male 1 0 26.0000
356 1 S 36.00 female 0 0 13.0000
357 0 S 25.00 male 0 0 13.0000
358 0 S 42.00 male 0 0 13.0000
359 1 S 42.00 female 0 0 13.0000
360 1 S 0.83 male 0 2 29.0000
361 1 S 26.00 male 1 1 29.0000
362 1 S 22.00 female 1 1 29.0000
363 1 S 35.00 female 0 0 21.0000
365 0 S 19.00 male 0 0 13.0000
366 0 S 44.00 female 1 0 26.0000
367 0 S 54.00 male 1 0 26.0000
368 0 S 52.00 male 0 0 13.5000
369 0 S 37.00 male 1 0 26.0000
370 0 S 29.00 female 1 0 26.0000
371 1 S 25.00 female 1 1 30.0000
372 1 S 45.00 female 0 2 30.0000
373 0 S 29.00 male 1 0 26.0000
374 1 S 28.00 female 1 0 26.0000
375 0 S 29.00 male 0 0 10.5000
376 0 S 28.00 male 0 0 13.0000
377 1 S 24.00 male 0 0 10.5000
378 1 S 8.00 female 0 2 26.2500
379 0 S 31.00 male 1 1 26.2500
380 1 S 31.00 female 1 1 26.2500
381 1 S 22.00 female 0 0 10.5000
382 0 S 30.00 female 0 0 13.0000
384 0 S 21.00 male 0 0 11.5000
386 1 S 8.00 male 1 1 36.7500
387 0 S 18.00 male 0 0 73.5000
388 1 S 48.00 female 0 2 36.7500
389 1 S 28.00 female 0 0 13.0000
390 0 S 32.00 male 0 0 13.0000
391 0 S 17.00 male 0 0 73.5000
392 0 C 29.00 male 1 0 27.7208
393 1 C 24.00 female 1 0 27.7208
394 0 S 25.00 male 0 0 31.5000
395 0 S 18.00 male 0 0 73.5000
396 1 S 18.00 female 0 1 23.0000
397 1 S 34.00 female 0 1 23.0000
398 0 S 54.00 male 0 0 26.0000
399 1 S 8.00 male 0 2 32.5000
400 0 S 42.00 male 1 1 32.5000
401 1 S 34.00 female 1 1 32.5000
402 1 C 27.00 female 1 0 13.8583
403 1 C 30.00 female 1 0 13.8583
404 0 S 23.00 male 0 0 13.0000
405 0 S 21.00 male 0 0 13.0000
406 0 S 18.00 male 0 0 13.0000
407 0 S 40.00 male 1 0 26.0000
408 1 S 29.00 female 1 0 26.0000
409 0 S 18.00 male 0 0 10.5000
410 0 S 36.00 male 0 0 13.0000
412 0 S 38.00 female 0 0 13.0000
413 0 S 35.00 male 0 0 26.0000
414 0 S 38.00 male 1 0 21.0000
415 0 S 34.00 male 1 0 21.0000
416 1 S 34.00 female 0 0 13.0000
417 0 S 16.00 male 0 0 26.0000
418 0 S 26.00 male 0 0 10.5000
419 0 S 47.00 male 0 0 10.5000
420 0 S 21.00 male 1 0 11.5000
421 0 S 21.00 male 1 0 11.5000
422 0 S 24.00 male 0 0 13.5000
423 0 S 24.00 male 0 0 13.0000
424 0 S 34.00 male 0 0 13.0000
425 0 S 30.00 male 0 0 13.0000
426 0 S 52.00 male 0 0 13.0000
427 0 S 30.00 male 0 0 13.0000
428 1 S 0.67 male 1 1 14.5000
429 1 S 24.00 female 0 2 14.5000
430 0 S 44.00 male 0 0 13.0000
431 1 S 6.00 female 0 1 33.0000
432 0 S 28.00 male 0 1 33.0000
433 1 S 62.00 male 0 0 10.5000
434 0 S 30.00 male 0 0 10.5000
435 1 S 7.00 female 0 2 26.2500
436 0 S 43.00 male 1 1 26.2500
437 1 S 45.00 female 1 1 26.2500
438 1 S 24.00 female 1 2 65.0000
439 1 S 24.00 female 1 2 65.0000
440 0 S 49.00 male 1 2 65.0000
441 1 S 48.00 female 1 2 65.0000
442 1 S 55.00 female 0 0 16.0000
443 0 S 24.00 male 2 0 73.5000
444 0 S 32.00 male 2 0 73.5000
445 0 S 21.00 male 2 0 73.5000
446 0 S 18.00 female 1 1 13.0000
447 1 S 20.00 female 2 1 23.0000
448 0 S 23.00 male 2 1 11.5000
449 0 S 36.00 male 0 0 13.0000
450 1 S 54.00 female 1 3 23.0000
451 0 S 50.00 male 0 0 13.0000
452 0 S 44.00 male 1 0 26.0000
453 1 S 29.00 female 1 0 26.0000
454 0 S 21.00 male 0 0 73.5000
455 1 S 42.00 male 0 0 13.0000
456 0 S 63.00 male 1 0 26.0000
457 0 S 60.00 female 1 0 26.0000
458 0 S 33.00 male 0 0 12.2750
459 1 S 17.00 female 0 0 10.5000
460 0 S 42.00 male 1 0 27.0000
461 1 S 24.00 female 2 1 27.0000
462 0 S 47.00 male 0 0 15.0000
463 0 S 24.00 male 2 0 31.5000
464 0 S 22.00 male 2 0 31.5000
465 0 S 32.00 male 0 0 10.5000
466 1 C 23.00 female 0 0 13.7917
467 0 S 34.00 male 1 0 26.0000
468 1 S 24.00 female 1 0 26.0000
469 0 S 22.00 female 0 0 21.0000
471 0 Q 35.00 male 0 0 12.3500
472 1 S 45.00 female 0 0 13.5000
473 0 Q 57.00 male 0 0 12.3500
475 0 S 31.00 male 0 0 10.5000
476 0 S 26.00 female 1 1 26.0000
477 0 S 30.00 male 1 1 26.0000
479 1 C 1.00 female 1 2 41.5792
480 1 C 3.00 female 1 2 41.5792
481 0 C 25.00 male 1 2 41.5792
482 1 C 22.00 female 1 2 41.5792
483 1 C 17.00 female 0 0 12.0000
485 1 S 34.00 female 0 0 10.5000
486 0 C 36.00 male 0 0 12.8750
487 0 S 24.00 male 0 0 10.5000
488 0 Q 61.00 male 0 0 12.3500
489 0 S 50.00 male 1 0 26.0000
490 1 S 42.00 female 1 0 26.0000
491 0 S 57.00 female 0 0 10.5000
493 1 C 1.00 male 0 2 37.0042
494 0 C 31.00 male 1 1 37.0042
495 1 C 24.00 female 1 1 37.0042
497 0 S 30.00 male 0 0 13.0000
498 0 S 40.00 male 0 0 16.0000
499 0 S 32.00 male 0 0 13.5000
500 0 S 30.00 male 0 0 13.0000
501 0 S 46.00 male 0 0 26.0000
502 1 S 13.00 female 0 1 19.5000
503 1 S 41.00 female 0 1 19.5000
504 1 S 19.00 male 0 0 10.5000
505 0 S 39.00 male 0 0 13.0000
506 0 S 48.00 male 0 0 13.0000
507 0 S 70.00 male 0 0 10.5000
508 0 S 27.00 male 0 0 13.0000
509 0 S 54.00 male 0 0 14.0000
510 0 S 39.00 male 0 0 26.0000
511 0 S 16.00 male 0 0 10.5000
512 0 Q 62.00 male 0 0 9.6875
513 0 C 32.50 male 1 0 30.0708
514 1 C 14.00 female 1 0 30.0708
515 1 S 2.00 male 1 1 26.0000
516 1 S 3.00 male 1 1 26.0000
517 0 S 36.50 male 0 2 26.0000
518 0 S 26.00 male 0 0 13.0000
519 0 S 19.00 male 1 1 36.7500
520 0 S 28.00 male 0 0 13.5000
521 1 C 20.00 male 0 0 13.8625
522 1 S 29.00 female 0 0 10.5000
523 0 S 39.00 male 0 0 13.0000
524 1 S 22.00 male 0 0 10.5000
526 0 S 23.00 male 0 0 10.5000
527 1 C 29.00 male 0 0 13.8583
528 0 S 28.00 male 0 0 10.5000
530 1 S 50.00 female 0 1 26.0000
531 0 S 19.00 male 0 0 10.5000
533 0 S 41.00 male 0 0 13.0000
534 1 S 21.00 female 0 1 21.0000
535 1 S 19.00 female 0 0 26.0000
536 0 S 43.00 male 0 1 21.0000
537 1 S 32.00 female 0 0 13.0000
538 0 S 34.00 male 0 0 13.0000
539 1 C 30.00 male 0 0 12.7375
540 0 C 27.00 male 0 0 15.0333
541 1 S 2.00 female 1 1 26.0000
542 1 S 8.00 female 1 1 26.0000
543 1 S 33.00 female 0 2 26.0000
544 0 S 36.00 male 0 0 10.5000
545 0 S 34.00 male 1 0 21.0000
546 1 S 30.00 female 3 0 21.0000
547 1 S 28.00 female 0 0 13.0000
548 0 C 23.00 male 0 0 15.0458
549 1 S 0.83 male 1 1 18.7500
550 1 S 3.00 male 1 1 18.7500
551 1 S 24.00 female 2 3 18.7500
552 1 S 50.00 female 0 0 10.5000
553 0 S 19.00 male 0 0 10.5000
554 1 S 21.00 female 0 0 10.5000
555 0 S 26.00 male 0 0 13.0000
556 0 S 25.00 male 0 0 13.0000
557 0 S 27.00 male 0 0 26.0000
558 1 S 25.00 female 0 1 26.0000
559 1 S 18.00 female 0 2 13.0000
560 1 S 20.00 female 0 0 36.7500
561 1 S 30.00 female 0 0 13.0000
562 0 S 59.00 male 0 0 13.5000
563 1 Q 30.00 female 0 0 12.3500
564 0 S 35.00 male 0 0 10.5000
565 1 S 40.00 female 0 0 13.0000
566 0 S 25.00 male 0 0 13.0000
567 0 C 41.00 male 0 0 15.0458
568 0 S 25.00 male 0 0 10.5000
569 0 S 18.50 male 0 0 13.0000
570 0 S 14.00 male 0 0 65.0000
571 1 S 50.00 female 0 0 10.5000
572 0 S 23.00 male 0 0 13.0000
573 1 S 28.00 female 0 0 12.6500
574 1 S 27.00 female 0 0 10.5000
575 0 S 29.00 male 1 0 21.0000
576 0 S 27.00 female 1 0 21.0000
577 0 S 40.00 male 0 0 13.0000
578 1 S 31.00 female 0 0 21.0000
579 0 S 30.00 male 1 0 21.0000
580 0 S 23.00 male 1 0 10.5000
581 1 S 31.00 female 0 0 21.0000
583 1 S 12.00 female 0 0 15.7500
584 1 S 40.00 female 0 0 15.7500
585 1 S 32.50 female 0 0 13.0000
586 0 S 27.00 male 1 0 26.0000
587 1 S 29.00 female 1 0 26.0000
588 1 S 2.00 male 1 1 23.0000
589 1 S 4.00 female 1 1 23.0000
590 1 S 29.00 female 0 2 23.0000
591 1 S 0.92 female 1 2 27.7500
592 1 S 5.00 female 1 2 27.7500
593 0 S 36.00 male 1 2 27.7500
594 1 S 33.00 female 1 2 27.7500
595 0 S 66.00 male 0 0 10.5000
597 1 S 31.00 male 0 0 13.0000
599 1 S 26.00 female 0 0 13.5000
600 0 S 24.00 female 0 0 13.0000
601 0 S 42.00 male 0 0 7.5500
602 0 S 13.00 male 0 2 20.2500
603 0 S 16.00 male 1 1 20.2500
604 1 S 35.00 female 1 1 20.2500
605 1 S 16.00 female 0 0 7.6500
606 1 S 25.00 male 0 0 7.6500
607 1 S 20.00 male 0 0 7.9250
608 1 C 18.00 female 0 0 7.2292
609 0 S 30.00 male 0 0 7.2500
610 0 S 26.00 male 0 0 8.0500
611 0 S 40.00 female 1 0 9.4750
612 1 S 0.83 male 0 1 9.3500
613 1 S 18.00 female 0 1 9.3500
614 1 C 26.00 male 0 0 18.7875
615 0 S 26.00 male 0 0 7.8875
616 0 S 20.00 male 0 0 7.9250
617 0 S 24.00 male 0 0 7.0500
618 0 S 25.00 male 0 0 7.0500
619 0 S 35.00 male 0 0 8.0500
620 0 S 18.00 male 0 0 8.3000
621 0 S 32.00 male 0 0 22.5250
622 1 S 19.00 female 1 0 7.8542
623 0 S 4.00 male 4 2 31.2750
624 0 S 6.00 female 4 2 31.2750
625 0 S 2.00 female 4 2 31.2750
626 1 S 17.00 female 4 2 7.9250
627 0 S 38.00 female 4 2 7.7750
628 0 S 9.00 female 4 2 31.2750
629 0 S 11.00 female 4 2 31.2750
630 0 S 39.00 male 1 5 31.2750
631 1 S 27.00 male 0 0 7.7958
632 0 S 26.00 male 0 0 7.7750
633 0 S 39.00 female 1 5 31.2750
634 0 S 20.00 male 0 0 7.8542
635 0 S 26.00 male 0 0 7.8958
636 0 S 25.00 male 1 0 17.8000
637 0 S 18.00 female 1 0 17.8000
638 0 S 24.00 male 0 0 7.7750
639 0 S 35.00 male 0 0 7.0500
640 0 S 5.00 male 4 2 31.3875
641 0 S 9.00 male 4 2 31.3875
642 1 S 3.00 male 4 2 31.3875
643 0 S 13.00 male 4 2 31.3875
644 1 S 5.00 female 4 2 31.3875
645 0 S 40.00 male 1 5 31.3875
646 1 S 23.00 male 0 0 7.7958
647 1 S 38.00 female 1 5 31.3875
648 1 C 45.00 female 0 0 7.2250
649 0 C 21.00 male 0 0 7.2250
650 0 S 23.00 male 0 0 7.0500
651 0 C 17.00 female 0 0 14.4583
652 0 C 30.00 male 0 0 7.2250
653 0 S 23.00 male 0 0 7.8542
654 1 C 13.00 female 0 0 7.2292
655 0 C 20.00 male 0 0 7.2250
656 0 S 32.00 male 1 0 15.8500
657 1 S 33.00 female 3 0 15.8500
658 1 C 0.75 female 2 1 19.2583
659 1 C 0.75 female 2 1 19.2583
660 1 C 5.00 female 2 1 19.2583
661 1 C 24.00 female 0 3 19.2583
662 1 S 18.00 female 0 0 8.0500
663 0 C 40.00 male 0 0 7.2250
664 0 S 26.00 male 0 0 7.8958
665 1 C 20.00 male 0 0 7.2292
666 0 C 18.00 female 0 1 14.4542
667 0 C 45.00 female 0 1 14.4542
668 0 Q 27.00 female 0 0 7.8792
669 0 S 22.00 male 0 0 8.0500
670 0 S 19.00 male 0 0 8.0500
671 0 S 26.00 male 0 0 7.7750
672 0 S 22.00 male 0 0 9.3500
674 0 C 20.00 male 0 0 4.0125
675 1 S 32.00 male 0 0 56.4958
676 0 S 21.00 male 0 0 7.7750
677 0 S 18.00 male 0 0 7.7500
678 0 S 26.00 male 0 0 7.8958
679 0 C 6.00 male 1 1 15.2458
680 0 C 9.00 female 1 1 15.2458
684 0 Q 40.00 male 1 1 15.5000
685 0 Q 32.00 female 1 1 15.5000
686 0 S 21.00 male 0 0 16.1000
687 1 Q 22.00 female 0 0 7.7250
688 0 S 20.00 female 0 0 7.8542
689 0 S 29.00 male 1 0 7.0458
690 0 S 22.00 male 1 0 7.2500
691 0 S 22.00 male 0 0 7.7958
692 0 S 35.00 male 0 0 8.0500
693 0 Q 18.50 female 0 0 7.2833
694 1 Q 21.00 male 0 0 7.8208
695 0 Q 19.00 male 0 0 6.7500
696 0 Q 18.00 female 0 0 7.8792
697 0 S 21.00 female 0 0 8.6625
698 0 S 30.00 female 0 0 8.6625
699 0 S 18.00 male 0 0 8.6625
700 0 S 38.00 male 0 0 8.6625
701 0 S 17.00 male 0 0 8.6625
702 0 S 17.00 male 0 0 8.6625
703 0 Q 21.00 female 0 0 7.7500
704 0 Q 21.00 male 0 0 7.7500
705 0 S 21.00 male 0 0 8.0500
708 0 S 28.00 male 0 0 7.7958
709 0 S 24.00 male 0 0 7.8542
710 1 Q 16.00 female 0 0 7.7500
711 0 Q 37.00 female 0 0 7.7500
712 0 S 28.00 male 0 0 7.2500
713 0 S 24.00 male 0 0 8.0500
714 0 Q 21.00 male 0 0 7.7333
715 1 S 32.00 male 0 0 56.4958
716 0 S 29.00 male 0 0 8.0500
717 0 C 26.00 male 1 0 14.4542
718 0 C 18.00 male 1 0 14.4542
719 0 S 20.00 male 0 0 7.0500
720 1 S 18.00 male 0 0 8.0500
721 0 Q 24.00 male 0 0 7.2500
722 0 S 36.00 male 0 0 7.4958
723 0 S 24.00 male 0 0 7.4958
724 0 Q 31.00 male 0 0 7.7333
725 0 Q 31.00 male 0 0 7.7500
726 1 Q 22.00 female 0 0 7.7500
727 0 Q 30.00 female 0 0 7.6292
728 0 Q 70.50 male 0 0 7.7500
729 0 S 43.00 male 0 0 8.0500
730 0 S 35.00 male 0 0 7.8958
731 0 S 27.00 male 0 0 7.8958
732 0 S 19.00 male 0 0 7.8958
733 0 S 30.00 male 0 0 8.0500
734 1 S 9.00 male 1 1 15.9000
735 1 S 3.00 male 1 1 15.9000
736 1 S 36.00 female 0 2 15.9000
737 0 S 59.00 male 0 0 7.2500
738 0 S 19.00 male 0 0 8.1583
739 1 S 17.00 female 0 1 16.1000
740 0 S 44.00 male 0 1 16.1000
741 0 S 17.00 male 0 0 8.6625
742 0 C 22.50 male 0 0 7.2250
743 1 S 45.00 male 0 0 8.0500
744 0 S 22.00 female 0 0 10.5167
745 0 S 19.00 male 0 0 10.1708
746 1 Q 30.00 female 0 0 6.9500
747 1 Q 29.00 male 0 0 7.7500
748 0 S 0.33 male 0 2 14.4000
749 0 S 34.00 male 1 1 14.4000
750 0 S 28.00 female 1 1 14.4000
751 0 S 27.00 male 0 0 7.8958
752 0 S 25.00 male 0 0 7.8958
753 0 S 24.00 male 2 0 24.1500
754 0 S 22.00 male 0 0 8.0500
755 0 S 21.00 male 2 0 24.1500
756 0 S 17.00 male 2 0 8.0500
759 1 S 36.50 male 1 0 17.4000
760 1 S 36.00 female 1 0 17.4000
761 1 S 30.00 male 0 0 9.5000
762 0 S 16.00 male 0 0 9.5000
763 1 S 1.00 male 1 2 20.5750
764 1 S 0.17 female 1 2 20.5750
765 0 S 26.00 male 1 2 20.5750
766 1 S 33.00 female 1 2 20.5750
767 0 S 25.00 male 0 0 7.8958
770 0 S 22.00 male 0 0 7.2500
771 0 S 36.00 male 0 0 7.2500
772 1 Q 19.00 female 0 0 7.8792
773 0 S 17.00 male 0 0 7.8958
774 0 S 42.00 male 0 0 8.6625
775 0 S 43.00 male 0 0 7.8958
777 0 Q 32.00 male 0 0 7.7500
778 1 S 19.00 male 0 0 8.0500
779 1 S 30.00 female 0 0 12.4750
780 0 Q 24.00 female 0 0 7.7500
781 1 S 23.00 female 0 0 8.0500
782 0 C 33.00 male 0 0 7.8958
783 0 Q 65.00 male 0 0 7.7500
784 1 S 24.00 male 0 0 7.5500
785 0 S 23.00 male 1 0 13.9000
786 1 S 22.00 female 1 0 13.9000
787 0 S 18.00 male 0 0 7.7750
788 0 S 16.00 male 0 0 7.7750
789 0 S 45.00 male 0 0 6.9750
791 0 C 39.00 male 0 2 7.2292
792 0 C 17.00 male 1 1 7.2292
793 0 C 15.00 male 1 1 7.2292
794 0 S 47.00 male 0 0 7.2500
795 1 S 5.00 female 0 0 12.4750
797 0 S 40.50 male 0 0 15.1000
798 0 Q 40.50 male 0 0 7.7500
800 0 S 18.00 male 0 0 7.7958
804 0 Q 26.00 male 0 0 7.8792
807 0 S 21.00 female 2 2 34.3750
808 0 S 9.00 female 2 2 34.3750
810 0 S 18.00 male 2 2 34.3750
811 0 S 16.00 male 1 3 34.3750
812 0 S 48.00 female 1 3 34.3750
815 0 Q 25.00 male 0 0 7.7417
818 0 S 22.00 male 0 0 8.0500
819 1 Q 16.00 female 0 0 7.7333
821 1 S 9.00 male 0 2 20.5250
822 0 S 33.00 male 1 1 20.5250
823 0 S 41.00 male 0 0 7.8500
824 1 S 31.00 female 1 1 20.5250
825 0 S 38.00 male 0 0 7.0500
826 0 S 9.00 male 5 2 46.9000
827 0 S 1.00 male 5 2 46.9000
828 0 S 11.00 male 5 2 46.9000
829 0 S 10.00 female 5 2 46.9000
830 0 S 16.00 female 5 2 46.9000
831 0 S 14.00 male 5 2 46.9000
832 0 S 40.00 male 1 6 46.9000
833 0 S 43.00 female 1 6 46.9000
834 0 S 51.00 male 0 0 8.0500
835 0 S 32.00 male 0 0 8.3625
837 0 S 20.00 male 0 0 9.8458
838 0 S 37.00 male 2 0 7.9250
839 0 S 28.00 male 2 0 7.9250
840 0 S 19.00 male 0 0 7.7750
841 0 S 24.00 female 0 0 8.8500
842 0 Q 17.00 female 0 0 7.7333
845 0 S 28.00 male 1 0 15.8500
846 1 S 24.00 female 1 0 15.8500
847 0 S 20.00 male 0 0 9.5000
848 0 C 23.50 male 0 0 7.2292
849 0 S 41.00 male 2 0 14.1083
850 0 S 26.00 male 1 0 7.8542
851 0 S 21.00 male 0 0 7.8542
852 1 S 45.00 female 1 0 14.1083
854 0 S 25.00 male 0 0 7.2500
856 0 C 11.00 male 0 0 18.7875
858 1 S 27.00 male 0 0 6.9750
860 0 Q 18.00 female 0 0 6.7500
861 1 S 26.00 female 0 0 7.9250
862 0 S 23.00 female 0 0 7.9250
863 1 S 22.00 female 0 0 8.9625
864 0 S 28.00 male 0 0 7.8958
865 0 S 28.00 female 0 0 7.7750
867 1 S 2.00 female 0 1 12.2875
868 1 S 22.00 female 1 1 12.2875
869 0 S 43.00 male 0 0 6.4500
870 0 S 28.00 male 0 0 22.5250
871 1 S 27.00 female 0 0 7.9250
874 0 S 42.00 male 0 0 7.6500
876 0 C 30.00 male 0 0 7.2292
878 0 S 27.00 female 1 0 7.9250
879 0 S 25.00 female 1 0 7.9250
881 1 C 29.00 male 0 0 7.8958
882 1 S 21.00 male 0 0 7.7958
884 0 S 20.00 male 0 0 7.8542
885 0 S 48.00 male 0 0 7.8542
886 0 S 17.00 male 1 0 7.0542
889 0 S 34.00 male 0 0 6.4958
890 1 S 26.00 male 0 0 7.7750
891 0 S 22.00 male 0 0 7.7958
892 0 S 33.00 male 0 0 8.6542
893 0 S 31.00 male 0 0 7.7750
894 0 S 29.00 male 0 0 7.8542
895 1 S 4.00 male 1 1 11.1333
896 1 S 1.00 female 1 1 11.1333
897 0 S 49.00 male 0 0 0.0000
898 0 S 33.00 male 0 0 7.7750
899 0 S 19.00 male 0 0 0.0000
900 1 S 27.00 female 0 2 11.1333
905 0 S 23.00 male 0 0 7.8958
906 1 S 32.00 male 0 0 7.8542
907 0 S 27.00 male 0 0 7.8542
908 0 S 20.00 female 1 0 9.8250
909 0 S 21.00 female 1 0 9.8250
910 1 S 32.00 male 0 0 7.9250
911 0 S 17.00 male 0 0 7.1250
912 0 S 21.00 male 0 0 8.4333
913 0 S 30.00 male 0 0 7.8958
914 1 S 21.00 male 0 0 7.7958
915 0 S 33.00 male 0 0 7.8542
916 0 S 22.00 male 0 0 7.5208
917 1 C 4.00 female 0 1 13.4167
918 1 C 39.00 male 0 1 13.4167
920 0 C 18.50 male 0 0 7.2292
925 0 Q 34.50 male 0 0 7.8292
926 0 S 44.00 male 0 0 8.0500
933 0 S 22.00 female 2 0 8.6625
934 0 S 26.00 male 2 0 8.6625
935 1 S 4.00 female 0 2 22.0250
936 1 S 29.00 male 3 1 22.0250
937 1 S 26.00 female 1 1 22.0250
938 0 S 1.00 female 1 1 12.1833
939 0 S 18.00 male 1 1 7.8542
940 0 S 36.00 female 0 2 12.1833
942 1 C 25.00 male 0 0 7.2292
944 0 S 37.00 female 0 0 9.5875
948 1 S 22.00 female 0 0 7.2500
950 1 S 26.00 male 0 0 56.4958
951 0 S 29.00 male 0 0 9.4833
952 0 S 29.00 male 0 0 7.7750
953 0 S 22.00 male 0 0 7.7750
954 1 C 22.00 male 0 0 7.2250
960 0 S 32.00 male 0 0 7.9250
961 0 C 34.50 male 0 0 6.4375
964 0 S 36.00 male 0 0 0.0000
965 0 S 39.00 male 0 0 24.1500
966 0 S 24.00 male 0 0 9.5000
967 0 S 25.00 female 0 0 7.7750
968 0 S 45.00 female 0 0 7.7500
969 0 S 36.00 male 1 0 15.5500
970 0 S 30.00 female 1 0 15.5500
971 1 S 20.00 male 1 0 7.9250
973 0 S 28.00 male 0 0 56.4958
975 0 S 30.00 male 1 0 16.1000
976 0 S 26.00 female 1 0 16.1000
978 0 S 20.50 male 0 0 7.2500
979 1 S 27.00 male 0 0 8.6625
980 0 S 51.00 male 0 0 7.0542
981 1 S 23.00 female 0 0 7.8542
982 1 S 32.00 male 0 0 7.5792
986 1 S 24.00 male 0 0 7.1417
987 0 S 22.00 male 0 0 7.1250
991 0 S 29.00 male 0 0 7.9250
993 0 Q 30.50 female 0 0 7.7500
996 0 C 35.00 male 0 0 7.8958
997 0 S 33.00 male 0 0 7.8958
1008 1 Q 15.00 female 0 0 8.0292
1009 0 Q 35.00 female 0 0 7.7500
1011 0 S 24.00 male 1 0 16.1000
1012 0 S 19.00 female 1 0 16.1000
1016 0 S 55.50 male 0 0 8.0500
1018 1 S 21.00 male 0 0 7.7750
1020 0 S 24.00 male 0 0 7.8958
1021 0 S 21.00 male 0 0 7.8958
1022 0 S 28.00 male 0 0 7.8958
1025 0 S 25.00 male 0 0 7.6500
1026 1 S 6.00 male 0 1 12.4750
1027 1 S 27.00 female 0 1 12.4750
1032 0 S 34.00 male 0 0 8.0500
1041 1 Q 24.00 female 0 0 7.7500
1046 0 S 18.00 male 0 0 7.7500
1047 0 S 22.00 male 0 0 7.8958
1048 1 C 15.00 female 0 0 7.2250
1049 1 C 1.00 female 0 2 15.7417
1050 1 C 20.00 male 1 1 15.7417
1051 1 C 19.00 female 1 1 15.7417
1052 0 S 33.00 male 0 0 8.0500
1057 1 C 12.00 male 1 0 11.2417
1058 1 C 14.00 female 1 0 11.2417
1059 0 S 29.00 female 0 0 7.9250
1060 0 S 28.00 male 0 0 8.0500
1061 1 S 18.00 female 0 0 7.7750
1062 1 S 26.00 female 0 0 7.8542
1063 0 S 21.00 male 0 0 7.8542
1064 0 S 41.00 male 0 0 7.1250
1065 1 S 39.00 male 0 0 7.9250
1066 0 S 21.00 male 0 0 7.8000
1067 0 C 28.50 male 0 0 7.2292
1068 1 S 22.00 female 0 0 7.7500
1069 0 S 61.00 male 0 0 6.2375
1076 0 S 23.00 male 0 0 9.2250
1080 1 S 22.00 female 0 0 7.7750
1083 1 S 9.00 male 0 1 3.1708
1084 0 S 28.00 male 0 0 22.5250
1085 0 S 42.00 male 0 1 8.4042
1087 0 S 31.00 female 0 0 7.8542
1088 0 S 28.00 male 0 0 7.8542
1089 1 S 32.00 male 0 0 7.7750
1090 0 S 20.00 male 0 0 9.2250
1091 0 S 23.00 female 0 0 8.6625
1092 0 S 20.00 female 0 0 8.6625
1093 0 S 20.00 male 0 0 8.6625
1094 0 S 16.00 male 0 0 9.2167
1095 1 S 31.00 female 0 0 8.6833
1097 0 S 2.00 male 3 1 21.0750
1098 0 S 6.00 male 3 1 21.0750
1099 0 S 3.00 female 3 1 21.0750
1100 0 S 8.00 female 3 1 21.0750
1101 0 S 29.00 female 0 4 21.0750
1102 0 S 1.00 male 4 1 39.6875
1103 0 S 7.00 male 4 1 39.6875
1104 0 S 2.00 male 4 1 39.6875
1105 0 S 16.00 male 4 1 39.6875
1106 0 S 14.00 male 4 1 39.6875
1107 0 S 41.00 female 0 5 39.6875
1108 0 S 21.00 male 0 0 8.6625
1109 0 S 19.00 male 0 0 14.5000
1111 0 S 32.00 male 0 0 7.8958
1112 0 S 0.75 male 1 1 13.7750
1113 0 S 3.00 female 1 1 13.7750
1114 0 S 26.00 female 0 2 13.7750
1118 0 S 21.00 male 0 0 7.9250
1119 0 S 25.00 male 0 0 7.9250
1120 0 S 22.00 male 0 0 7.2500
1121 1 S 25.00 male 1 0 7.7750
1126 0 S 24.00 male 0 0 8.0500
1127 0 S 28.00 female 0 0 7.8958
1128 0 S 19.00 male 0 0 7.8958
1130 0 S 25.00 male 1 0 7.7750
1131 0 S 18.00 female 0 0 7.7750
1132 1 S 32.00 male 0 0 8.0500
1134 0 S 17.00 male 0 0 8.6625
1135 0 S 24.00 male 0 0 8.6625
1140 0 S 38.00 male 0 0 7.8958
1141 0 S 21.00 male 0 0 8.0500
1142 0 Q 10.00 male 4 1 29.1250
1143 0 Q 4.00 male 4 1 29.1250
1144 0 Q 7.00 male 4 1 29.1250
1145 0 Q 2.00 male 4 1 29.1250
1146 0 Q 8.00 male 4 1 29.1250
1147 0 Q 39.00 female 0 5 29.1250
1148 0 S 22.00 female 0 0 39.6875
1149 0 S 35.00 male 0 0 7.1250
1153 0 S 50.00 male 1 0 14.5000
1154 0 S 47.00 female 1 0 14.5000
1157 0 S 2.00 female 1 1 20.2125
1158 0 S 18.00 male 1 1 20.2125
1159 0 S 41.00 female 0 2 20.2125
1161 0 S 50.00 male 0 0 8.0500
1162 0 S 16.00 male 0 0 8.0500
1166 0 C 25.00 male 0 0 7.2250
1170 0 S 38.50 male 0 0 7.2500
1172 0 S 14.50 male 8 2 69.5500
1182 0 S 24.00 male 0 0 9.3250
1183 1 S 21.00 female 0 0 7.6500
1184 0 S 39.00 male 0 0 7.9250
1188 1 S 1.00 female 1 1 16.7000
1189 1 S 24.00 female 0 2 16.7000
1190 1 S 4.00 female 1 1 16.7000
1191 1 S 25.00 male 0 0 9.5000
1192 0 S 20.00 male 0 0 8.0500
1193 0 S 24.50 male 0 0 8.0500
1197 1 S 29.00 male 0 0 9.5000
1202 0 C 22.00 male 0 0 7.2292
1204 0 S 40.00 male 0 0 7.8958
1205 0 S 21.00 male 0 0 7.9250
1206 1 S 18.00 female 0 0 7.4958
1207 0 S 4.00 male 3 2 27.9000
1208 0 S 10.00 male 3 2 27.9000
1209 0 S 9.00 female 3 2 27.9000
1210 0 S 2.00 female 3 2 27.9000
1211 0 S 40.00 male 1 4 27.9000
1212 0 S 45.00 female 1 4 27.9000
1218 0 S 19.00 male 0 0 7.6500
1219 0 S 30.00 male 0 0 8.0500
1221 0 S 32.00 male 0 0 8.0500
1223 0 C 33.00 male 0 0 8.6625
1224 1 S 23.00 female 0 0 7.5500
1225 0 S 21.00 male 0 0 8.0500
1227 0 S 19.00 male 0 0 7.8958
1228 0 S 22.00 female 0 0 9.8375
1229 1 S 31.00 male 0 0 7.9250
1230 0 S 27.00 male 0 0 8.6625
1231 0 S 2.00 female 0 1 10.4625
1232 0 S 29.00 female 1 1 10.4625
1233 1 S 16.00 male 0 0 8.0500
1234 1 S 44.00 male 0 0 7.9250
1235 0 S 25.00 male 0 0 7.0500
1236 0 S 74.00 male 0 0 7.7750
1237 1 S 14.00 male 0 0 9.2250
1238 0 S 24.00 male 0 0 7.7958
1239 1 S 25.00 male 0 0 7.7958
1240 0 S 34.00 male 0 0 8.0500
1241 1 C 0.42 male 0 1 8.5167
1245 1 C 16.00 female 1 1 8.5167
1249 0 S 32.00 male 0 0 7.9250
1252 0 S 30.50 male 0 0 8.0500
1253 0 S 44.00 male 0 0 8.0500
1255 1 S 25.00 male 0 0 0.0000
1257 1 C 7.00 male 1 1 15.2458
1258 1 C 9.00 female 1 1 15.2458
1259 1 C 29.00 female 0 2 15.2458
1260 0 S 36.00 male 0 0 7.8958
1261 1 S 18.00 female 0 0 9.8417
1262 1 S 63.00 female 0 0 9.5875
1264 0 S 11.50 male 1 1 14.5000
1265 0 S 40.50 male 0 2 14.5000
1266 0 S 10.00 female 0 2 24.1500
1267 0 S 36.00 male 1 1 24.1500
1268 0 S 30.00 female 1 1 24.1500
1270 0 S 33.00 male 0 0 9.5000
1271 0 S 28.00 male 0 0 9.5000
1272 0 S 28.00 male 0 0 9.5000
1273 0 S 47.00 male 0 0 9.0000
1274 0 S 18.00 female 2 0 18.0000
1275 0 S 31.00 male 3 0 18.0000
1276 0 S 16.00 male 2 0 18.0000
1277 0 S 31.00 female 1 0 18.0000
1278 1 C 22.00 male 0 0 7.2250
1279 0 S 20.00 male 0 0 7.8542
1280 0 S 14.00 female 0 0 7.8542
1281 0 S 22.00 male 0 0 7.8958
1282 0 S 22.00 male 0 0 9.0000
1286 0 S 32.50 male 0 0 9.5000
1287 1 C 38.00 female 0 0 7.2292
1288 0 S 51.00 male 0 0 7.7500
1289 0 S 18.00 male 1 0 6.4958
1290 0 S 21.00 male 1 0 6.4958
1291 1 S 47.00 female 1 0 7.0000
1295 0 S 28.50 male 0 0 16.1000
1296 0 S 21.00 male 0 0 7.2500
1297 0 S 27.00 male 0 0 8.6625
1299 0 S 36.00 male 0 0 9.5000
1300 0 C 27.00 male 1 0 14.4542
1301 1 C 15.00 female 1 0 14.4542
1302 0 C 45.50 male 0 0 7.2250
1305 0 C 14.50 female 1 0 14.4542
1307 0 C 26.50 male 0 0 7.2250
1308 0 C 27.00 male 0 0 7.2250
1309 0 S 29.00 male 0 0 7.8750
View(titanic)



# Round fractional ages to the nearest integer
titanic$age <- round(titanic$age) # for cases like value that are 0.92,0.42 are rouded up to the nearest interger
#reason this makes the data more consistent and easy to work with and well interpretable
View(titanic)



#We need to install Packages for better visualization and some statistical analysis
install.packages("tidyverse", repos = "https://cloud.r-project.org/")# tells R where to download packages from
## Installing package into 'C:/Users/Home/AppData/Local/R/win-library/4.3'
## (as 'lib' is unspecified)
## package 'tidyverse' successfully unpacked and MD5 sums checked
## 
## The downloaded binary packages are in
##  C:\Users\Home\AppData\Local\Temp\RtmpqyR593\downloaded_packages
library(tidyverse)
## Warning: package 'tidyverse' was built under R version 4.3.3
## ── Attaching core tidyverse packages ──────────────────────── tidyverse 2.0.0 ──
## ✔ dplyr     1.1.4     ✔ readr     2.1.5
## ✔ forcats   1.0.0     ✔ stringr   1.5.1
## ✔ lubridate 1.9.3     ✔ tibble    3.2.1
## ✔ purrr     1.0.2     ✔ tidyr     1.3.1
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## ✖ dplyr::filter() masks stats::filter()
## ✖ dplyr::lag()    masks stats::lag()
## ✖ purrr::lift()   masks caret::lift()
## ℹ Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors
library(ggplot2)

# Mean of age
mean_age <- mean(titanic$age, na.rm = TRUE)
mean_age
## [1] 29.80345
# Median of age
median_age <- median(titanic$age, na.rm = TRUE)
median_age
## [1] 28
# Mode of age
mode_age <- as.numeric(names(sort(table(titanic$age), decreasing = TRUE)[1]))
mode_age
## [1] 24
# Calculate total number of passengers
total_passengers <- nrow(titanic)
total_passengers
## [1] 1043
# Calculate number of male passengers
male_passengers <- sum(titanic$sex == "male", na.rm = TRUE)
male_passengers
## [1] 657
# Calculate number of female passengers
female_passengers <- sum(titanic$sex == "female", na.rm = TRUE)
female_passengers 
## [1] 386
# Calculate number of male passengers who survived
male_survived <- sum(titanic$sex == "male" & titanic$survived == 1, na.rm = TRUE)
male_survived
## [1] 135
#Calculate number of female passengers who survived
female_survived <- sum(titanic$sex == "female" & titanic$survived == 1, na.rm = TRUE)
female_survived 
## [1] 290
# Calculate percentage of male passengers who survived
male_survival_percentage <- (male_survived / male_passengers) * 100
male_survival_percentage
## [1] 20.54795
# Calculate percentage of female passengers who survived
female_survival_percentage <- (female_survived / female_passengers) * 100
female_survival_percentage
## [1] 75.12953
#Visualization Analysis
# Create a data frame for visualization
survival_data <- data.frame(Gender = c("Male", "Female"),Survived = c(male_survived, female_survived))
survival_data 
##   Gender Survived
## 1   Male      135
## 2 Female      290
# Plot the data
ggplot(survival_data, aes(x = Gender, y = Survived, fill = Gender)) +
  geom_bar(stat = "identity") +
  labs(title = "Number of Passengers Who Survived by Gender",
       x = "Gender",
       y = "Number of Passengers") +
  theme_minimal() +
  theme(legend.position = "none")  # Remove the legend

ggplot(data = titanic) +geom_point(mapping = aes(x = sex, y = age))

#Each point on the plot represents a passenger from the Titanic dataset, 
#with its position determined by its gender and survival status.
ggplot(data = titanic) +geom_point(mapping = aes(x = sex, y = survived))

ggplot(data = titanic) +
  stat_summary(mapping = aes(x = sex, y = survived), 
               fun = "mean", 
               geom = "point", 
               size = 10)

ggplot(data = titanic) +
  geom_point(mapping = aes(x = sex, y = age, color = factor(survived))) +
  labs(title = "Survival by Age and Sex", x = "sex", y = "age",color = "Survived")# this displays the colour of those who survived=1 and those that didnt survive=0

ggplot(data = titanic) + 
  geom_point(mapping = aes(x = embarked, y = age, color = sex)) +
  scale_color_manual(values = c("male" = "blue", "female" = "pink"), 
                     labels = c("male" = "Male", "female" = "Female")) +
  labs(x = "Embarked", y = "Age")

library(scales)
## Warning: package 'scales' was built under R version 4.3.3
## 
## Attaching package: 'scales'
## 
## The following object is masked from 'package:purrr':
## 
##     discard
## 
## The following object is masked from 'package:readr':
## 
##     col_factor
ggplot(data = titanic) +stat_summary(mapping = aes(x = sex, y = survived), fun = "mean", geom = "point", size = 5) + scale_y_continuous(labels = scales::percent_format())

ggplot(data = titanic) +geom_point(mapping = aes(x = sex, y = survived))

# Plot the data
ggplot(titanic, aes(x = embarked, y = fare, color = sex)) +
  geom_point() +
  labs(title = "Number of Passengers by Sex and Fare",
       x = "Embarked",
       y = "Fare") +
  theme_minimal()

#Plot the data
ggplot(titanic, aes(x = embarked, fill = factor(sibsp))) +
  geom_bar(position = "dodge", color = "black") +
  labs(title = "Number of Passengers by Embarked and Sibsp",
       x = "Embarked",
       y = "Number of Passengers",
       fill = "Number of Sibsp") +
  theme_minimal()

# Plot the data
ggplot(data = titanic) +
  geom_point(mapping = aes(x = sex, y = age, color = factor(survived))) +
  facet_wrap(~ embarked, nrow = 2) 

#density plot
ggplot(data = titanic) +
  geom_density(mapping = aes(x = age, fill = sex), alpha = 0.5) +
  labs(title = "Density Plot of Passenger Ages by Sex",
       x = "Age",
       y = "Density") +
  theme_minimal()

# Histogram
ggplot(data = titanic) +
  geom_histogram(mapping = aes(x = age)) +
  labs(title = "Histogram of Passenger Ages",
       x = "Age",
       y = "Frequency") +
  theme_minimal()
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.

ggplot(data = titanic) +
  geom_histogram(mapping = aes(x = age), bins = 20, fill = "lightblue", color = "black") +
  labs(title = "Histogram of Passenger Ages",
       x = "Age",
       y = "Count") +
  theme_minimal()

#Histogram of "Fare":
ggplot(data = titanic) +
  geom_histogram(mapping = aes(x = fare), bins = 20, fill = "lightgreen", color = "pink") +
  labs(title = "Histogram of Passenger Fares",
       x = "Fare",
       y = "Count") +
  theme_minimal()

#Histogram of "Siblings/Spouses Aboard" (sibsp
ggplot(data = titanic) +
  geom_histogram(mapping = aes(x = sibsp), bins = 10, fill = "lightcoral", color = "black") +
  labs(title = "Histogram of Siblings/Spouses Aboard",
       x = "Sibsp",
       y = "Count") +
  theme_minimal()

# Boxplot
ggplot(data = titanic) +
  geom_boxplot(mapping = aes(x = sex, y = age)) +
  labs(title = "Boxplot of Passenger Ages by Sex",
       x = "Sex",
       y = "Age") +
  theme_minimal()

#Remove non-numeric columns
numeric_titanic <- titanic[, sapply(titanic, is.numeric)]
# Calculate correlation matrix
correlation_matrix <- cor(numeric_titanic)
# Plot heatmap
ggplot(data = reshape2::melt(correlation_matrix), aes(x = Var1, y = Var2, fill = value)) +
  geom_tile() +
  scale_fill_gradient(low = "white", high = "steelblue") +
  labs(title = "Correlation Heatmap of Titanic Dataset",
       x = "Variable",
       y = "Variable") +
  theme_minimal()

###5)   Survived is the dependent variable, find its proportion in the dataset.
# Calculate the proportion of passengers who survived
survived_proportion <- mean(titanic$survived == 1, na.rm = TRUE) * 100

# Print the proportion
survived_proportion
## [1] 40.74784
#(7)Make Survived embarked and sex as factors.
titanic$survived <- factor(titanic$survived)
titanic$survived
##    [1] 1 1 0 0 0 1 1 0 1 0 0 1 1 1 1 0 1 1 0 1 1 1 1 1 0 1 1 1 1 0 1 1 1 0 1 1 0
##   [38] 0 1 1 1 1 0 1 1 1 1 0 0 0 1 1 1 1 0 0 1 0 1 1 1 1 1 1 0 1 1 0 1 0 1 1 0 1
##   [75] 1 0 1 1 1 1 0 1 1 1 1 1 1 0 1 1 1 1 0 1 1 1 0 1 0 1 1 1 0 0 1 1 1 1 1 1 1
##  [112] 0 1 0 1 1 1 0 1 0 1 1 0 1 1 1 0 1 1 1 1 0 1 0 1 1 0 1 0 0 1 1 1 0 1 1 1 1
##  [149] 0 1 0 0 0 0 0 1 1 1 1 1 1 0 1 1 1 0 1 0 1 1 0 1 0 1 1 0 0 1 0 0 0 1 1 1 0
##  [186] 0 0 1 1 0 1 0 1 1 0 0 0 0 0 1 0 1 1 1 0 1 0 0 1 0 1 1 0 0 1 0 1 0 1 1 1 0
##  [223] 1 1 1 1 1 1 1 0 1 1 1 0 0 0 1 1 1 1 1 1 0 1 0 1 1 1 0 0 0 1 1 0 1 1 0 1 1
##  [260] 1 0 0 0 1 0 1 0 0 0 1 1 0 1 0 0 1 1 0 1 1 0 1 0 1 0 0 0 0 1 0 0 0 1 0 0 1
##  [297] 1 0 1 1 1 1 1 1 0 0 0 0 1 1 0 1 1 0 1 0 0 1 1 1 1 1 0 0 0 0 0 0 1 1 0 1 0
##  [334] 0 1 1 0 1 1 0 0 1 0 1 1 0 0 0 1 0 0 1 1 0 1 0 1 1 1 0 0 0 0 1 0 0 0 0 0 0
##  [371] 1 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 0 1 0 1 0 1 1 1 0 1 1 0 0 0 0 1 0 0 1 0 0
##  [408] 1 0 1 0 0 0 1 0 1 0 0 0 0 1 0 1 0 0 1 0 0 0 0 1 1 0 1 1 1 0 0 0 0 1 0 1 0
##  [445] 1 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 1 1 0 1 0 1 0 1 0 0 1 1
##  [482] 0 1 0 1 0 1 1 1 0 0 1 1 0 1 1 1 1 0 1 0 0 0 1 1 1 1 0 1 0 1 0 0 0 0 0 1 0
##  [519] 1 1 0 0 0 1 0 0 1 1 1 1 0 1 1 1 1 1 1 0 1 0 1 1 0 0 0 0 1 1 1 1 1 0 0 0 1
##  [556] 1 1 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 1 1 0
##  [593] 0 0 0 0 1 0 0 1 1 1 1 1 1 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0
##  [630] 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 1 0 0 0
##  [667] 0 0 0 0 1 1 1 0 0 1 0 0 0 1 0 0 1 1 0 0 0 0 0 0 0 0 0 1 1 1 0 1 1 0 1 0 0
##  [704] 0 1 0 0 0 0 1 1 0 1 0 0 1 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 1 0
##  [741] 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 1 0 1 0 1 0 0 1
##  [778] 1 0 0 1 0 0 0 0 1 1 0 0 0 0 1 0 0 0 0 1 1 0 0 0 1 0 1 0 0 0 1 0 0 0 1 0 0
##  [815] 1 1 0 0 0 0 0 1 1 1 0 0 0 1 0 1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0
##  [852] 1 1 1 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 1 0 1 0 0 1 1 1 1 0 1 1 0 0 1 1 0 0
##  [889] 1 0 0 1 0 0 1 1 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
##  [926] 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 1
##  [963] 1 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 1 1 0 0 1 0 1 0 1 1 0
## [1000] 0 0 1 1 1 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 1 0 0 0 0
## [1037] 0 1 0 0 0 0 0
## Levels: 0 1
titanic$embarked <- factor(titanic$embarked)
titanic$embarked 
##    [1] S S S S S S S S S C C C C S S C C C C S S C C S C C C S S S C S S S C S S
##   [38] C C S C C S S C C C S S S S S S S S S S S S S S C S C C C S S C C C S S S
##   [75] S C C S S S S S S S S S S C C C C C C C C C C S C S S S S S S C S C C C C
##  [112] S S S C C C C C C C S S S C C C C C C C S S S C C S S S S C C S S S C S S
##  [149] C S S S C C S S S S S C C S C S S S S S C S S S S S C C S S C S Q Q Q C S
##  [186] S C C C C S S C C C C S S S S C C S S S C S C S S S C C C S C C S C C C C
##  [223] C C C C S S S S S C S S C S S S S C C C C C S C C C S S S S S S S S C C C
##  [260] C C S S C C C S S S C S S S C C C S C C C S C C C S S S S S S S S S S S S
##  [297] S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S
##  [334] S S S S S S S S S S S S S S C C S S S S S S S S C C S S S S S S S S S S S
##  [371] S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S
##  [408] S S S S S S S S S S S S S C S S S Q S Q S S S C C C C C S C S Q S S S C C
##  [445] C S S S S S S S S S S S S S S S Q C C S S S S S S C S S S S C S S S S S S
##  [482] S S S C C S S S S S S S C S S S S S S S S S S S S S S Q S S S C S S S S S
##  [519] S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S C S S S S
##  [556] S C S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S C C
##  [593] S C C S C C S S C C C C S C S C C C Q S S S S C S S S S C C Q Q S Q S S S
##  [630] S S Q Q Q Q S S S S S S Q Q S S S Q Q S S Q S S C C S S Q S S Q Q Q Q Q S
##  [667] S S S S S S S S S S S S C S S S Q Q S S S S S S S S S S S S S S S S S S S
##  [704] S Q S S S Q S S Q S C Q S S S S S S C C C S S S Q S Q S S S S S Q S Q S S
##  [741] S S S S S S S S S S S S S S S S S S Q S S S C S S S S S C S Q S S S S S S
##  [778] S S S S S C S S C S S S S S S S S S S S S S S S S S S S S S S S S S S S S
##  [815] C C C Q S S S S S S S S S C S S S S S S C S C S S S S S S S S S S S S S S
##  [852] S S S S S Q C S Q Q S S S S S S S S S S S Q S S C C C C S C C S S S S S S
##  [889] S S C S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S
##  [926] S S S S S S S S S S S S S Q Q Q Q Q Q S S S S S S S S S C S S S S S S S S
##  [963] S S S S C S S S S S S S S S S S S C S S S S S S S S S S S S S S S S C C S
## [1000] S S S C C C S S S S S S S S S S S S S S S S C S S S S S C S S S S S S S S
## [1037] C C C C C C S
## Levels: C Q S
titanic$sex <- factor(titanic$sex)
titanic$sex 
##    [1] female male   female male   female male   female male   female male  
##   [11] male   female female female male   male   female female male   male  
##   [21] female male   female female male   male   female female male   male  
##   [31] male   female female male   female female male   male   female female
##   [41] female female male   male   female male   female male   male   male  
##   [51] male   female male   female male   male   female male   female male  
##   [61] female female female male   male   female female male   female male  
##   [71] female female male   female female male   female male   male   female
##   [81] male   female male   female male   male   female male   female female
##   [91] female male   male   female female female female male   male   female
##  [101] female female male   male   female female male   male   female male  
##  [111] female male   female male   female female female male   male   male  
##  [121] male   female male   female male   female male   male   female male  
##  [131] female male   female male   male   female male   female male   male  
##  [141] female female female male   female male   male   female female male  
##  [151] male   male   male   male   male   male   female female female female
##  [161] male   male   female female female male   female male   female female
##  [171] male   female male   female female male   male   male   male   male  
##  [181] male   female female male   male   male   male   female female male  
##  [191] female male   female female male   male   male   male   male   female
##  [201] male   female female male   male   female male   male   female male  
##  [211] male   female male   male   female male   female male   male   female
##  [221] female male   female female female female male   female male   male  
##  [231] female male   male   male   male   male   female male   female male  
##  [241] male   female male   male   male   male   female female male   female
##  [251] male   female female male   female male   male   male   female male  
##  [261] male   male   male   female male   female male   male   male   female
##  [271] female male   female male   male   female female male   male   female
##  [281] male   female male   female male   male   male   male   female male  
##  [291] male   male   female male   male   male   female male   male   female
##  [301] female female male   female male   male   male   male   female female
##  [311] male   female female male   female male   male   female male   male  
##  [321] female female male   female male   male   male   female female female
##  [331] male   female male   male   male   female male   female female female
##  [341] male   male   male   female female male   male   male   female male  
##  [351] male   female female male   male   male   female female female male  
##  [361] male   male   male   female male   male   female male   male   male  
##  [371] female male   male   male   male   male   male   male   male   male  
##  [381] male   male   male   female male   female male   male   male   female
##  [391] male   female female female male   female female male   male   male  
##  [401] female female male   male   female male   male   female male   male  
##  [411] male   female male   female male   female male   male   male   male  
##  [421] female male   female female male   female male   male   female male  
##  [431] female female male   female female female male   male   male   male  
##  [441] female female male   male   female male   male   male   male   male  
##  [451] female female male   male   male   male   male   male   male   male  
##  [461] male   male   female male   male   male   male   male   male   male  
##  [471] female male   male   male   male   male   female male   male   female
##  [481] female male   female male   male   male   female female female male  
##  [491] male   female female male   male   male   female female male   female
##  [501] male   male   male   female female female female male   female male  
##  [511] female male   male   male   male   male   female male   female female
##  [521] male   female male   female male   male   female female female female
##  [531] male   female male   female female female female male   female male  
##  [541] male   female female male   male   male   female female male   male  
##  [551] female male   male   female male   female male   male   male   male  
##  [561] male   male   male   male   female male   female female female female
##  [571] female female male   male   male   female male   male   male   female
##  [581] male   male   male   male   male   male   female male   male   female
##  [591] female male   male   female male   male   female male   male   female
##  [601] female female female female female male   male   male   female female
##  [611] female male   male   male   male   male   male   male   male   male  
##  [621] male   female male   female male   female female male   male   male  
##  [631] male   female male   male   female female female male   male   male  
##  [641] male   female male   male   male   male   female female male   male  
##  [651] male   male   male   male   male   male   male   male   male   male  
##  [661] male   male   female female male   male   male   male   male   male  
##  [671] male   male   female male   male   female male   male   male   male  
##  [681] female male   female male   male   male   female male   male   male  
##  [691] male   male   male   male   female male   male   male   female male  
##  [701] female male   male   male   female male   male   male   male   male  
##  [711] female female female male   male   male   male   female male   male  
##  [721] male   male   male   male   male   female male   male   male   male  
##  [731] female female male   male   female male   male   female male   male  
##  [741] male   female male   male   male   male   female female male   male  
##  [751] female male   male   male   male   male   male   female female male  
##  [761] female male   male   male   male   male   female male   male   male  
##  [771] female female female female male   female female female male   male  
##  [781] female male   male   female female male   male   male   male   male  
##  [791] male   male   male   male   male   male   male   female male   male  
##  [801] male   female male   male   male   female female male   male   male  
##  [811] male   male   male   male   female male   male   male   male   female
##  [821] male   female male   female female male   female male   female female
##  [831] male   male   male   male   male   male   male   male   male   male  
##  [841] female female male   female male   male   male   female male   male  
##  [851] male   female male   male   male   male   female male   male   female
##  [861] female male   female male   male   male   male   male   male   male  
##  [871] female male   female male   male   female female male   female male  
##  [881] male   female female male   female female male   male   male   male  
##  [891] male   female male   male   female male   male   male   female male  
##  [901] male   male   female female male   male   female male   male   female
##  [911] female female male   male   male   male   male   female male   male  
##  [921] male   male   female female male   male   male   male   male   female
##  [931] male   male   female male   male   male   male   male   male   male  
##  [941] male   male   male   female female male   male   female female male  
##  [951] female male   male   male   male   male   male   female male   female
##  [961] female female male   male   male   male   male   male   male   female
##  [971] male   male   female female male   female male   male   male   male  
##  [981] female male   male   female male   male   female female male   male  
##  [991] male   male   male   male   male   male   male   female male   male  
## [1001] male   male   male   female female male   female female male   male  
## [1011] female male   female male   male   male   male   female male   male  
## [1021] female male   male   female male   male   male   female male   male  
## [1031] male   female male   male   male   male   male   female male   female
## [1041] male   male   male  
## Levels: female male
#(8)Find the correlation matrix between survival and the other features
# Compute correlation matrix

# Convert factors to numeric
titanic_numeric <- as.data.frame(sapply(titanic, function(x) if(is.factor(x)) as.numeric(x) else x))

# Compute correlation matrix
correlation_matrix <- cor(titanic_numeric)

# Correlation with survival
survival_correlation <- correlation_matrix["survived", ]


# Display correlation matrix
#Scatter plot between survival and age:
print(correlation_matrix)
##             survived    embarked         age        sex       sibsp       parch
## survived  1.00000000 -0.20225751 -0.05686779 -0.5363321 -0.01140343  0.11543601
## embarked -0.20225751  1.00000000 -0.08288529  0.1094254  0.04550984  0.01122982
## age      -0.05686779 -0.08288529  1.00000000  0.0657101 -0.24222445 -0.14912595
## sex      -0.53633212  0.10942541  0.06571010  1.0000000 -0.09646420 -0.22253083
## sibsp    -0.01140343  0.04550984 -0.24222445 -0.0964642  1.00000000  0.37395967
## parch     0.11543601  0.01122982 -0.14912595 -0.2225308  0.37395967  1.00000000
## fare      0.24785762 -0.30145454  0.17739013 -0.1864003  0.14213054  0.21764954
##                fare
## survived  0.2478576
## embarked -0.3014545
## age       0.1773901
## sex      -0.1864003
## sibsp     0.1421305
## parch     0.2176495
## fare      1.0000000
#(9)Plot  survival with other features to see if any correlation exists
# Scatter plot of survival vs. age
ggplot(titanic, aes(x = age, y = survived)) +
  geom_point() +
  labs(title = "Survived vs. Age", x = "Age", y = "survived")

# Bar plot of survival by gender
ggplot(titanic, aes(x = sex, fill = factor(survived))) +
  geom_bar() +
  labs(title = "Survival by Gender", x = "Gender", y = "Count") +
  scale_fill_manual(values = c("red", "blue"))  # Customize fill colors

# Box plot of survival by passenger class
ggplot(titanic, aes(x = factor(parch), y = survived)) +
  geom_boxplot() +
  labs(title = "Survival by Passenger Class", x = "Passenger Class", y = "Survival")

#pairwise scatter plot matrix to visualize the relationships between multiple numerical #attributes in the dataset.
pairs(~ age + fare + sibsp + parch + survived, data = titanic)

#plot to visualize the distribution of survival outcomes within each category of a categorical variable
ggplot(titanic, aes(x = embarked, fill = factor(survived))) +
  geom_bar() +
  labs(title = "Survival by Embarked", x = "Embarked", y = "Count", fill = "Survived")

#faceted scatter plot to visualize the relationship between survival and other numerical
#attributes, such as fare and age, across different categories (e.g., sex, passenger class).
ggplot(titanic, aes(x = fare, y = age, color = factor(survived))) +
  geom_point() +
  facet_wrap(~ sex, ncol = 2) +
  labs(title = "Survival by Fare and Age", x = "Fare", y = "Age", color = "Survived") #

#---------------------A pie chart representation 
# Calculate the count of passengers by survival status and sex
survival_counts <- table(titanic$survived, titanic$sex)

# Convert to data frame for plotting
survival_data <- data.frame(Survived = rep(c("Not Survived", "Survived"), each = nlevels(titanic$sex)),
                            Sex = rep(levels(titanic$sex), 2),
                            Count = as.numeric(survival_counts))

# Create pie chart with facets
ggplot(survival_data, aes(x = "", y = Count, fill = Survived)) +
  geom_bar(stat = "identity", width = 1) +
  coord_polar("y", start = 0) +
  facet_wrap(~Sex) +
  labs(title = "Survival Status of Titanic Passengers by Sex",
       fill = "Survived",
       x = NULL,
       y = NULL) +
  theme_void() +
  theme(legend.title = element_text(size = 12),
        legend.text = element_text(size = 10),
        plot.title = element_text(size = 14, hjust = 0.5))

# (10)Set seed for reproducibility
# Load and preprocess data
data(titanic)
## Warning in data(titanic): data set 'titanic' not found
set.seed(1000)

#(11)   Build your training (till index 1046) and test (till index 1308) datasets
# Split data into training and testing sets
train_index <- sample(1:nrow(titanic), 0.7 * nrow(titanic))
titanic_train <- titanic[train_index, ]
titanic_test <- titanic[-train_index, ]

#(12)
library(rpart.plot)
## Warning: package 'rpart.plot' was built under R version 4.3.3
# (13)Train the model
fit <- rpart(survived ~ sex + age + sibsp + parch + fare + embarked, data = titanic_train, method = "class")
fit
## n= 730 
## 
## node), split, n, loss, yval, (yprob)
##       * denotes terminal node
## 
##  1) root 730 304 0 (0.5835616 0.4164384)  
##    2) sex=male 454  93 0 (0.7951542 0.2048458)  
##      4) age>=9.5 419  73 0 (0.8257757 0.1742243) *
##      5) age< 9.5 35  15 1 (0.4285714 0.5714286)  
##       10) sibsp>=2 12   0 0 (1.0000000 0.0000000) *
##       11) sibsp< 2 23   3 1 (0.1304348 0.8695652) *
##    3) sex=female 276  65 1 (0.2355072 0.7644928) *
#14)    Plot your regression tree and save plot into an image file 
# Plot the regression tree
rpart.plot(fit, main="Regression Tree", extra=101)

# Save the plot as an image file (e.g., PNG)
png("regression_tree.png", width=800, height=600)
rpart.plot(fit, main="Regression Tree", extra=101)
dev.off()
## png 
##   2
#(15) Fit the regression tree model
fit <- rpart(survived ~ sex + age + sibsp + parch + fare + embarked, data = titanic_train, method = "class")

library(rattle)
## Warning: package 'rattle' was built under R version 4.3.3
## Loading required package: bitops
## Rattle: A free graphical interface for data science with R.
## Version 5.5.1 Copyright (c) 2006-2021 Togaware Pty Ltd.
## Type 'rattle()' to shake, rattle, and roll your data.
library(RColorBrewer)

#(16)
fancyRpartPlot(fit) 

# Make predictions on the training set
train_predictions <- predict(fit, titanic_train, type = "class")

# Make predictions on the test set
test_predictions <- predict(fit, titanic_test, type = "class")

#(17) Fit the regression tree model
fit <- rpart(survived ~ sex + age + sibsp + parch + fare + embarked, data = titanic_train, method = "class")

# Examine the tree
summary(fit)
## Call:
## rpart(formula = survived ~ sex + age + sibsp + parch + fare + 
##     embarked, data = titanic_train, method = "class")
##   n= 730 
## 
##           CP nsplit rel error    xerror       xstd
## 1 0.48026316      0 1.0000000 1.0000000 0.04381336
## 2 0.02796053      1 0.5197368 0.5197368 0.03660088
## 3 0.01000000      3 0.4638158 0.4967105 0.03599919
## 
## Variable importance
##      sex     fare    sibsp      age    parch embarked 
##       69        9        9        7        4        2 
## 
## Node number 1: 730 observations,    complexity param=0.4802632
##   predicted class=0  expected loss=0.4164384  P(node) =1
##     class counts:   426   304
##    probabilities: 0.584 0.416 
##   left son=2 (454 obs) right son=3 (276 obs)
##   Primary splits:
##       sex      splits as  RL,          improve=107.522700, (0 missing)
##       fare     < 50.7396 to the left,  improve= 28.335920, (0 missing)
##       embarked splits as  RLL,         improve= 21.813940, (0 missing)
##       parch    < 0.5     to the left,  improve= 13.911990, (0 missing)
##       age      < 8.5     to the right, improve=  7.238396, (0 missing)
##   Surrogate splits:
##       fare     < 77.6229 to the left,  agree=0.656, adj=0.091, (0 split)
##       parch    < 0.5     to the left,  agree=0.647, adj=0.065, (0 split)
##       embarked splits as  LRL,         agree=0.625, adj=0.007, (0 split)
## 
## Node number 2: 454 observations,    complexity param=0.02796053
##   predicted class=0  expected loss=0.2048458  P(node) =0.6219178
##     class counts:   361    93
##    probabilities: 0.795 0.205 
##   left son=4 (419 obs) right son=5 (35 obs)
##   Primary splits:
##       age      < 9.5     to the right, improve=10.192580, (0 missing)
##       embarked splits as  RLL,         improve= 6.087304, (0 missing)
##       parch    < 0.5     to the left,  improve= 4.717559, (0 missing)
##       fare     < 79.025  to the left,  improve= 3.061952, (0 missing)
##       sibsp    < 1.5     to the right, improve= 1.395124, (0 missing)
##   Surrogate splits:
##       sibsp < 2.5     to the left,  agree=0.938, adj=0.2, (0 split)
## 
## Node number 3: 276 observations
##   predicted class=1  expected loss=0.2355072  P(node) =0.3780822
##     class counts:    65   211
##    probabilities: 0.236 0.764 
## 
## Node number 4: 419 observations
##   predicted class=0  expected loss=0.1742243  P(node) =0.5739726
##     class counts:   346    73
##    probabilities: 0.826 0.174 
## 
## Node number 5: 35 observations,    complexity param=0.02796053
##   predicted class=1  expected loss=0.4285714  P(node) =0.04794521
##     class counts:    15    20
##    probabilities: 0.429 0.571 
##   left son=10 (12 obs) right son=11 (23 obs)
##   Primary splits:
##       sibsp < 2       to the right, improve=11.9254700, (0 missing)
##       fare  < 26.95   to the right, improve= 3.1559290, (0 missing)
##       age   < 3.5     to the right, improve= 0.6722689, (0 missing)
##       parch < 1.5     to the right, improve= 0.2380952, (0 missing)
##   Surrogate splits:
##       fare     < 26.95   to the right, agree=0.800, adj=0.417, (0 split)
##       embarked splits as  RLR,         agree=0.714, adj=0.167, (0 split)
## 
## Node number 10: 12 observations
##   predicted class=0  expected loss=0  P(node) =0.01643836
##     class counts:    12     0
##    probabilities: 1.000 0.000 
## 
## Node number 11: 23 observations
##   predicted class=1  expected loss=0.1304348  P(node) =0.03150685
##     class counts:     3    20
##    probabilities: 0.130 0.870
# the most important feature over which the tree first splits is the "sex" variable
#The node splits into two branches based on gender: one branch for females and another for 
#males. This aligns with the historical practice of "Women and children first!" during 
#emergencies like the Titanic disaster, where priority was given to women and children 
#for evacuation.Therefore, the analysis of the regression tree model supports the notion 
#that gender played a crucial role in survival on the Titanic, reflecting the well-known 
#principle of prioritizing women and children during emergencies.

#(18)
predictions <- predict(fit, newdata = titanic_test, type = "class")
predictions
##   11   12   14   17   18   19   20   21   32   39   40   42   46   48   54   55 
##    0    1    1    0    1    1    0    0    0    0    0    1    0    0    0    0 
##   65   66   67   68   73   76   79   83   84   87   89   95  101  102  105  106 
##    0    1    1    1    1    0    1    1    1    0    1    1    0    0    1    1 
##  110  112  115  116  118  120  121  128  132  133  139  143  144  149  151  152 
##    0    1    0    0    1    0    0    1    1    0    0    0    0    0    0    0 
##  156  157  162  170  172  174  175  176  186  188  189  194  195  203  210  215 
##    1    0    1    1    0    0    0    0    0    1    1    1    0    0    0    1 
##  227  229  230  232  233  237  240  243  260  261  262  265  275  280  293  309 
##    0    0    1    0    0    0    0    1    0    1    0    0    0    0    0    1 
##  312  315  320  328  330  331  336  340  344  348  353  370  372  374  381  387 
##    1    1    1    0    1    0    0    0    0    0    1    1    1    1    1    0 
##  392  393  396  401  403  404  406  407  408  409  418  421  422  426  429  430 
##    0    1    1    1    1    0    0    0    1    0    0    0    0    0    1    0 
##  432  433  435  438  439  440  441  442  444  460  468  469  471  473  477  481 
##    0    0    1    1    1    0    1    1    0    0    1    1    0    0    0    0 
##  482  483  485  486  489  490  494  495  501  502  507  509  513  522  528  533 
##    1    1    1    0    0    1    0    1    0    1    0    0    0    1    0    0 
##  535  537  539  540  544  546  548  553  557  559  561  563  566  573  575  578 
##    1    1    0    0    0    1    0    0    0    1    1    1    0    1    0    1 
##  587  593  601  605  608  610  611  617  618  619  621  625  631  632  633  638 
##    1    0    0    1    1    0    1    0    0    0    0    1    0    0    1    0 
##  642  644  647  649  651  656  659  663  666  672  674  675  678  685  686  690 
##    0    1    1    0    1    0    1    0    1    0    0    0    0    1    0    0 
##  692  694  695  698  702  708  711  712  719  721  733  735  737  745  747  752 
##    0    0    0    1    0    0    1    0    0    0    0    1    0    0    0    0 
##  754  759  762  766  767  770  773  774  777  779  780  783  793  797  811  812 
##    0    0    0    1    0    0    0    0    0    1    1    0    0    0    0    1 
##  828  829  831  834  845  849  850  854  861  867  870  871  881  891  892  893 
##    0    1    0    0    0    0    0    0    1    1    0    1    0    0    0    0 
##  898  899  900  906  907  908  914  938  939  944  948  950  951  954  960  965 
##    0    0    1    0    0    1    0    1    0    1    1    0    0    0    0    0 
##  970  973  975  978  986  993  996  997 1008 1018 1021 1022 1047 1049 1060 1064 
##    1    0    0    0    0    1    0    0    1    0    0    0    0    1    0    0 
## 1069 1083 1089 1090 1092 1098 1100 1101 1106 1107 1113 1114 1121 1130 1134 1143 
##    0    1    0    0    1    0    1    1    0    1    1    1    0    0    0    0 
## 1145 1148 1153 1170 1172 1189 1202 1219 1221 1228 1236 1238 1249 1265 1267 1268 
##    0    1    0    0    0    1    0    0    0    1    0    0    0    0    0    1 
## 1274 1275 1279 1286 1288 1297 1305 1308 1309 
##    1    0    0    0    0    0    1    0    0 
## Levels: 0 1
#(19) Create a data frame with PassengerSex and Survived columns
Results <- data.frame(PassengerSex = titanic_test$sex, Survived = as.factor(predictions))

# Print the first few rows of the Results data frame
print(head(Results))
##    PassengerSex Survived
## 11         male        0
## 12       female        1
## 14       female        1
## 17         male        0
## 18       female        1
## 19       female        1
# Calculate accuracy on training and test sets
train_accuracy <- sum(train_predictions == titanic_train$survived) / nrow(titanic_train)
test_accuracy <- sum(test_predictions == titanic_test$survived) / nrow(titanic_test)

# Print accuracies
print(paste("Training Accuracy:", train_accuracy))
## [1] "Training Accuracy: 0.806849315068493"
print(paste("Test Accuracy:", test_accuracy))
## [1] "Test Accuracy: 0.776357827476038"
# Perform cross-validation to assess overfitting
fit_cv <- train(
  survived ~ sex + age + sibsp + parch + fare + embarked, 
  data = titanic_train, 
  method = "rpart", 
  trControl = trainControl(method = "cv", number = 5)
)

# Print cross-validated accuracy
print(paste("Cross-Validated Accuracy:", fit_cv$results$Accuracy))
## [1] "Cross-Validated Accuracy: 0.798645175595037"
## [2] "Cross-Validated Accuracy: 0.791833264245708"
## [3] "Cross-Validated Accuracy: 0.650425611907493"
#(20) Save the Results data frame to a CSV file
write.csv(Results, file = "Titanicdtree.csv", row.names = FALSE)