library(dplyr)
library(ggplot2)
data <- read.csv(full_path)
head(data)
## Country LifeExp InfantSurvival Under5Survival TBFree PropMD
## 1 Afghanistan 42 0.835 0.743 0.99769 0.000228841
## 2 Albania 71 0.985 0.983 0.99974 0.001143127
## 3 Algeria 71 0.967 0.962 0.99944 0.001060478
## 4 Andorra 82 0.997 0.996 0.99983 0.003297297
## 5 Angola 41 0.846 0.740 0.99656 0.000070400
## 6 Antigua and Barbuda 73 0.990 0.989 0.99991 0.000142857
## PropRN PersExp GovtExp TotExp
## 1 0.000572294 20 92 112
## 2 0.004614439 169 3128 3297
## 3 0.002091362 108 5184 5292
## 4 0.003500000 2589 169725 172314
## 5 0.001146162 36 1620 1656
## 6 0.002773810 503 12543 13046
Provide a scatterplot of LifeExp~TotExp and simple linear regression, the F statistics, R^2, standard error,and p-values. Whether the assumptions of simple linear regression are met.
ggplot(data, aes(x = TotExp, y = LifeExp)) +
geom_point() +
ggtitle("Scatterplot of Life Expectancy vs. Total Healthcare Expenditure") +
xlab("Total Expenditures (US$)") +
ylab("Life Expectancy (years)")
model <- lm(LifeExp ~ TotExp, data = data)
summary(model)
##
## Call:
## lm(formula = LifeExp ~ TotExp, data = data)
##
## Residuals:
## Min 1Q Median 3Q Max
## -24.764 -4.778 3.154 7.116 13.292
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 6.475e+01 7.535e-01 85.933 < 2e-16 ***
## TotExp 6.297e-05 7.795e-06 8.079 7.71e-14 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 9.371 on 188 degrees of freedom
## Multiple R-squared: 0.2577, Adjusted R-squared: 0.2537
## F-statistic: 65.26 on 1 and 188 DF, p-value: 7.714e-14
par(mfrow=c(2,2))
plot(model)
ggplot(data, aes(x = TotExp, y = LifeExp)) +
geom_point() +
geom_smooth(method = "lm", col = "blue") +
ggtitle("Scatterplot with Regression Line: Life Expectancy vs. Total Healthcare Expenditure") +
xlab("Total Expenditures (US$)") +
ylab("Life Expectancy (years)")
## `geom_smooth()` using formula = 'y ~ x'
INTERPRETATION.
Raise life expectancy to the 4.6 power (i.e., LifeExp^4.6). Raise total expenditures to the 0.06 power (nearly a log transform, TotExp^.06). Plot LifeExp^4.6 as a function of TotExp^.06, and r re-run the simple regression model using the transformed variables. Provide and interpret the F statistics, R^2, standard error, and p-values. Which model is “better?”
data$LifeExp_trans <- data$LifeExp^4.6
data$TotExp_trans <- data$TotExp^0.06
ggplot(data, aes(x = TotExp_trans, y = LifeExp_trans)) +
geom_point() +
geom_smooth(method = "lm", color = "blue") +
labs(title = "Transformed Life Expectancy vs. Transformed Total Expenditure",
x = "Total Expenditures^0.06",
y = "Life Expectancy^4.6")
## `geom_smooth()` using formula = 'y ~ x'
model_trans <- lm(LifeExp_trans ~ TotExp_trans, data = data)
summary_trans <- summary(model_trans)
print(summary_trans)
##
## Call:
## lm(formula = LifeExp_trans ~ TotExp_trans, data = data)
##
## Residuals:
## Min 1Q Median 3Q Max
## -308616089 -53978977 13697187 59139231 211951764
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -736527910 46817945 -15.73 <2e-16 ***
## TotExp_trans 620060216 27518940 22.53 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 90490000 on 188 degrees of freedom
## Multiple R-squared: 0.7298, Adjusted R-squared: 0.7283
## F-statistic: 507.7 on 1 and 188 DF, p-value: < 2.2e-16
par(mfrow=c(2,2))
plot(model_trans)
INTERPRETATION
So this model is better!
Using the results from 3, forecast life expectancy when TotExp^.06 =1.5. Then forecast life expectancy when TotExp^.06=2.5.
We can do this by plugging in the values of \(TotExp^{0.06}\) into the regression equation:
\[ \text{LifeExp}^{4.6} = \text{Intercept} + \text{Coefficient} \times (TotExp^{0.06}) \]
The estimated intercept is -736,527,910 and the estimated coefficient for \(TotExp^{0.06}\) is 620,060,216.
intercept <- -736527910
coefficient <- 620060216
predicted_lifeexp_1_5 <- intercept + coefficient * (1.5)
predicted_lifeexp_2_5 <- intercept + coefficient * (2.5)
forecast_lifeexp_1_5 <- predicted_lifeexp_1_5^(1/4.6)
forecast_lifeexp_2_5 <- predicted_lifeexp_2_5^(1/4.6)
forecast_lifeexp_1_5
## [1] 63.31153
forecast_lifeexp_2_5
## [1] 86.50645
model4 <- lm(LifeExp ~ PropMD + TotExp + PropMD*TotExp, data = data)
summary(model4)
##
## Call:
## lm(formula = LifeExp ~ PropMD + TotExp + PropMD * TotExp, data = data)
##
## Residuals:
## Min 1Q Median 3Q Max
## -27.320 -4.132 2.098 6.540 13.074
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 6.277e+01 7.956e-01 78.899 < 2e-16 ***
## PropMD 1.497e+03 2.788e+02 5.371 2.32e-07 ***
## TotExp 7.233e-05 8.982e-06 8.053 9.39e-14 ***
## PropMD:TotExp -6.026e-03 1.472e-03 -4.093 6.35e-05 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 8.765 on 186 degrees of freedom
## Multiple R-squared: 0.3574, Adjusted R-squared: 0.3471
## F-statistic: 34.49 on 3 and 186 DF, p-value: < 2.2e-16
par(mfrow=c(2,2))
plot(model4)
INTERPRETATION.
Forecast LifeExp when PropMD=.03 and TotExp = 14. Does this forecast seem realistic? Why or why not?
intercept <- 6.277e+01
coeff_PropMD <- 1.497e+03
coeff_TotExp <- 7.233e-05
coeff_Interaction <- -6.026e-03
PropMD_value <- 0.03
TotExp_value <- 14
LifeExp_forecast <- intercept +
(coeff_PropMD * PropMD_value) +
(coeff_TotExp * TotExp_value) +
(coeff_Interaction * PropMD_value * TotExp_value)
LifeExp_forecast
## [1] 107.6785
INTERPRETATION.
All in all, no, this is not a realistic result mainly because this model cannot accurately predict life expectancy at these numbers due to the limitations in the data set in relation to these numbers. Therefore, the model is likely over-estimating the life expectancy at these numbers.