# My dataset
data(flights)
data <- read_excel("myData_charts.xlsx")
data %>% skimr::skim()
| Name | Piped data |
| Number of rows | 45090 |
| Number of columns | 10 |
| _______________________ | |
| Column type frequency: | |
| character | 1 |
| logical | 1 |
| numeric | 7 |
| POSIXct | 1 |
| ________________________ | |
| Group variables | None |
Variable type: character
| skim_variable | n_missing | complete_rate | min | max | empty | n_unique | whitespace |
|---|---|---|---|---|---|---|---|
| stock_symbol | 2 | 1 | 3 | 5 | 0 | 14 | 0 |
Variable type: logical
| skim_variable | n_missing | complete_rate | mean | count |
|---|---|---|---|---|
| Column1 | 45090 | 0 | NaN | : |
Variable type: numeric
| skim_variable | n_missing | complete_rate | mean | sd | p0 | p25 | p50 | p75 | p100 | hist |
|---|---|---|---|---|---|---|---|---|---|---|
| open | 2 | 1 | 89.27 | 101.63 | 1.08 | 25.67 | 47.93 | 128.66 | 6.962800e+02 | ▇▂▁▁▁ |
| high | 2 | 1 | 90.37 | 103.00 | 1.11 | 25.93 | 48.46 | 129.85 | 7.009900e+02 | ▇▂▁▁▁ |
| low | 2 | 1 | 88.11 | 100.12 | 1.00 | 25.36 | 47.47 | 127.25 | 6.860900e+02 | ▇▂▁▁▁ |
| close | 2 | 1 | 89.27 | 101.59 | 1.05 | 25.66 | 47.97 | 128.64 | 6.916900e+02 | ▇▂▁▁▁ |
| adj_close | 2 | 1 | 85.21 | 101.00 | 1.05 | 22.08 | 45.38 | 113.67 | 6.916900e+02 | ▇▁▁▁▁ |
| volume | 2 | 1 | 52978130.54 | 93247295.87 | 589200.00 | 9629425.00 | 26463150.00 | 58397675.00 | 1.880998e+09 | ▇▁▁▁▁ |
| HPR | 1 | 1 | 0.00 | 0.02 | -0.20 | -0.01 | 0.00 | 0.01 | 2.000000e-01 | ▁▁▇▁▁ |
Variable type: POSIXct
| skim_variable | n_missing | complete_rate | min | max | median | n_unique |
|---|---|---|---|---|---|---|
| date | 2 | 1 | 2010-01-04 | 2023-01-24 | 2016-08-09 | 3287 |
# Selecting stocks and their closing prices
selected_stocks <- c("AAPL", "ADBE", "AMZN", "CRM", "CSCO", "GOOGL", "IBM", "INTC", "META", "MSFT", "NFLX", "NVDA", "ORCL", "TSLA")
flights %>% skimr::skim()
| Name | Piped data |
| Number of rows | 336776 |
| Number of columns | 19 |
| _______________________ | |
| Column type frequency: | |
| character | 4 |
| numeric | 14 |
| POSIXct | 1 |
| ________________________ | |
| Group variables | None |
Variable type: character
| skim_variable | n_missing | complete_rate | min | max | empty | n_unique | whitespace |
|---|---|---|---|---|---|---|---|
| carrier | 0 | 1.00 | 2 | 2 | 0 | 16 | 0 |
| tailnum | 2512 | 0.99 | 5 | 6 | 0 | 4043 | 0 |
| origin | 0 | 1.00 | 3 | 3 | 0 | 3 | 0 |
| dest | 0 | 1.00 | 3 | 3 | 0 | 105 | 0 |
Variable type: numeric
| skim_variable | n_missing | complete_rate | mean | sd | p0 | p25 | p50 | p75 | p100 | hist |
|---|---|---|---|---|---|---|---|---|---|---|
| year | 0 | 1.00 | 2013.00 | 0.00 | 2013 | 2013 | 2013 | 2013 | 2013 | ▁▁▇▁▁ |
| month | 0 | 1.00 | 6.55 | 3.41 | 1 | 4 | 7 | 10 | 12 | ▇▆▆▆▇ |
| day | 0 | 1.00 | 15.71 | 8.77 | 1 | 8 | 16 | 23 | 31 | ▇▇▇▇▆ |
| dep_time | 8255 | 0.98 | 1349.11 | 488.28 | 1 | 907 | 1401 | 1744 | 2400 | ▁▇▆▇▃ |
| sched_dep_time | 0 | 1.00 | 1344.25 | 467.34 | 106 | 906 | 1359 | 1729 | 2359 | ▁▇▇▇▃ |
| dep_delay | 8255 | 0.98 | 12.64 | 40.21 | -43 | -5 | -2 | 11 | 1301 | ▇▁▁▁▁ |
| arr_time | 8713 | 0.97 | 1502.05 | 533.26 | 1 | 1104 | 1535 | 1940 | 2400 | ▁▃▇▇▇ |
| sched_arr_time | 0 | 1.00 | 1536.38 | 497.46 | 1 | 1124 | 1556 | 1945 | 2359 | ▁▃▇▇▇ |
| arr_delay | 9430 | 0.97 | 6.90 | 44.63 | -86 | -17 | -5 | 14 | 1272 | ▇▁▁▁▁ |
| flight | 0 | 1.00 | 1971.92 | 1632.47 | 1 | 553 | 1496 | 3465 | 8500 | ▇▃▃▁▁ |
| air_time | 9430 | 0.97 | 150.69 | 93.69 | 20 | 82 | 129 | 192 | 695 | ▇▂▂▁▁ |
| distance | 0 | 1.00 | 1039.91 | 733.23 | 17 | 502 | 872 | 1389 | 4983 | ▇▃▂▁▁ |
| hour | 0 | 1.00 | 13.18 | 4.66 | 1 | 9 | 13 | 17 | 23 | ▁▇▇▇▅ |
| minute | 0 | 1.00 | 26.23 | 19.30 | 0 | 8 | 29 | 44 | 59 | ▇▃▆▃▅ |
Variable type: POSIXct
| skim_variable | n_missing | complete_rate | min | max | median | n_unique |
|---|---|---|---|---|---|---|
| time_hour | 0 | 1 | 2013-01-01 05:00:00 | 2013-12-31 23:00:00 | 2013-07-03 10:00:00 | 6936 |
ncol_num <- flights %>%
# Select a type of variables
select(where(is.numeric)) %>%
# Count columns
ncol()
ncol_num
## [1] 14
count_ncol_numeric <- function(.data) {
ncol_num <- .data %>%
# Select a type of variables
select(where(is.numeric)) %>%
# Count columns
ncol()
# return the new variable
return(ncol_num)
}
flights %>% count_ncol_numeric()
## [1] 14
flights %>% .[1:10, -1:-13] %>% count_ncol_numeric()
## [1] 4
count_ncol_type <- function(.data, type_data = "numeric") {
# if statement for type of variables
if(type_data == "numeric") {
# body
ncol_type <- .data %>%
# Select a type of variables
select(where(is.numeric)) %>%
# Count columns
ncol()
} else if (type_data == "character") {
# body
ncol_type <- .data %>%
# Select a type of variables
select(where(is.character)) %>%
# Count columns
ncol()
}
# return the new variable
return(ncol_type)
}
flights %>% count_ncol_type()
## [1] 14
flights %>% count_ncol_type(type_data = "character")
## [1] 4
flights %>% .[1:10, 1:5] %>% count_ncol_type(type_data = "character")
## [1] 0
nrow_num <- flights %>%
# filter rows that meet a condition
filter(carrier == "DL") %>%
# Count rows
nrow()
nrow_num
## [1] 48110
count_num_flights_by_carrier <- function(.data, carrier_name) {
#body
nrow_num <- .data %>%
# filter rows that meet a condition
filter(carrier == carrier_name) %>%
# Count rows
nrow()
# return the new variable
return(nrow_num)
}
flights %>% .[1:10, "carrier"] %>% count_num_flights_by_carrier(carrier_name = "AA")
## [1] 2
Create your own.
Use the filter() function to select rows that meet a condition. Refer to Chapter 5.2 Filter rows with filter()
nrow_num <- data %>%
filter(stock_symbol == "AAPL") %>%
nrow()
nrow_num
## [1] 3271
# Count numeric columns
ncol_num_numeric <- data %>%
select(where(is.numeric)) %>%
ncol()
ncol_num_numeric
## [1] 7
count_ncol_closes_by_stock_symbol <- function(.data, symbol) {
# body
nrow_num <- .data %>%
# Select a type of variables
filter(stock_symbol == symbol) %>%
# Count columns
nrow()
# return the new variable
return(nrow_num)
}
data %>% count_ncol_closes_by_stock_symbol(symbol = "AAPL")
## [1] 3271
data %>% count_ncol_closes_by_stock_symbol(symbol = "TSLA")
## [1] 3148
data %>% .[1:10, "stock_symbol"] %>% count_ncol_closes_by_stock_symbol(symbol = "AAPL")
## [1] 10
count_ncol_numeric <- function(.data) {
# Count numeric columns in the data
ncol_num_numeric <- .data %>%
select(where(is.numeric)) %>%
ncol()
# Return the number of numeric columns
return(ncol_num_numeric)
}
# Example usage of the function
data %>% count_ncol_numeric()
## [1] 7