# Installing required packages
if (!require("dplyr"))
  install.packages("dplyr")
## Loading required package: dplyr
## 
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
## 
##     filter, lag
## The following objects are masked from 'package:base':
## 
##     intersect, setdiff, setequal, union
if (!require("tidyverse"))
  install.packages("tidyverse")
## Loading required package: tidyverse
## Warning: package 'tidyverse' was built under R version 4.3.3
## ── Attaching core tidyverse packages ──────────────────────── tidyverse 2.0.0 ──
## ✔ forcats   1.0.0     ✔ readr     2.1.5
## ✔ ggplot2   3.4.4     ✔ stringr   1.5.1
## ✔ lubridate 1.9.3     ✔ tibble    3.2.1
## ✔ purrr     1.0.2     ✔ tidyr     1.3.1
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## ✖ dplyr::filter() masks stats::filter()
## ✖ dplyr::lag()    masks stats::lag()
## ℹ Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors
library(dplyr)
library(ggplot2)

# Read the data
# NOTE: You may edit the URL to load a different dataset
mydata <- read.csv("https://raw.githubusercontent.com/drkblake/Data/main/Educ_Income_2022.csv")

head(mydata,10)
##    GEOID          County     State PctCollege FamIncome
## 1  47001 Anderson County Tennessee       24.5     75637
## 2  47003  Bedford County Tennessee       17.1     71159
## 3  47005   Benton County Tennessee       11.1     65800
## 4  47007  Bledsoe County Tennessee       10.3     59695
## 5  47009   Blount County Tennessee       26.0     85194
## 6  47011  Bradley County Tennessee       23.9     75270
## 7  47013 Campbell County Tennessee       12.9     61629
## 8  47015   Cannon County Tennessee       17.5     71000
## 9  47017  Carroll County Tennessee       19.8     68542
## 10 47019   Carter County Tennessee       21.1     61776
mydata$DV <- mydata$PctCollege #Edit YOURDVNAME
mydata$IV <- mydata$FamIncome #Edit YOURIVNAME

ggplot(mydata, aes(x = DV)) + geom_histogram(color = "black", fill = "#1f78b4")
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.

ggplot(mydata, aes(x = IV)) + geom_histogram(color = "black", fill = "#1f78b4")
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.

# Creating and summarizing an initial regression model called myreg, and checking for bivariate outliers.
options(scipen = 999)
myreg <- lm(DV ~ IV,
            data = mydata)
plot(mydata$IV, mydata$DV)
abline(lm(mydata$DV ~ mydata$IV))

summary(myreg)
## 
## Call:
## lm(formula = DV ~ IV, data = mydata)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -9.0510 -3.1047 -0.3815  3.1929 15.9863 
## 
## Coefficients:
##                 Estimate   Std. Error t value             Pr(>|t|)    
## (Intercept) -17.59952875   2.52111063  -6.981       0.000000000428 ***
## IV            0.00052124   0.00003511  14.846 < 0.0000000000000002 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 4.672 on 93 degrees of freedom
## Multiple R-squared:  0.7032, Adjusted R-squared:  0.7001 
## F-statistic: 220.4 on 1 and 93 DF,  p-value: < 0.00000000000000022

Set up and run a regression analysis in R that investigates the relationship between PctCollege and FamIncome, then incorporate your code and output into an RMarkdown document, along with a short description of what the results of the analysis mean. Publish your RMarkdown document on your RPubs site, then then submit the published document’s URL using the Week 13 Lab drop box. The assignment is due by 11:59 p.m. on Friday.

The code here helps to determine outliers in large groups of people, with this line whenever there is still continuous independent variables (family income & percent of people that go to college). This code helps to establish that overall on average people earn more whenever considering family income whenever having earned a college education. (The IV is represented as <.0002 for the independent variable, with the income slowly increasing whenever more people go to college,