# List of packages
packages <- c("tidyverse", "modelsummary", "flextable",
"fst", "viridis", "knitr", "kableExtra", "rmarkdown", "ggridges", "questionr")
# Install packages if they aren't installed already
new_packages <- packages[!(packages %in% installed.packages()[,"Package"])]
if(length(new_packages)) install.packages(new_packages)
# Load the packages
lapply(packages, library, character.only = TRUE)
## ── Attaching core tidyverse packages ──────────────────────── tidyverse 2.0.0 ──
## ✔ dplyr 1.1.4 ✔ readr 2.1.4
## ✔ forcats 1.0.0 ✔ stringr 1.5.1
## ✔ ggplot2 3.4.4 ✔ tibble 3.2.1
## ✔ lubridate 1.9.3 ✔ tidyr 1.3.0
## ✔ purrr 1.0.2
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## ✖ dplyr::filter() masks stats::filter()
## ✖ dplyr::lag() masks stats::lag()
## ℹ Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors
##
## Attaching package: 'flextable'
##
##
## The following object is masked from 'package:purrr':
##
## compose
##
##
## Loading required package: viridisLite
##
##
## Attaching package: 'kableExtra'
##
##
## The following objects are masked from 'package:flextable':
##
## as_image, footnote
##
##
## The following object is masked from 'package:dplyr':
##
## group_rows
## [[1]]
## [1] "lubridate" "forcats" "stringr" "dplyr" "purrr" "readr"
## [7] "tidyr" "tibble" "ggplot2" "tidyverse" "stats" "graphics"
## [13] "grDevices" "utils" "datasets" "methods" "base"
##
## [[2]]
## [1] "modelsummary" "lubridate" "forcats" "stringr" "dplyr"
## [6] "purrr" "readr" "tidyr" "tibble" "ggplot2"
## [11] "tidyverse" "stats" "graphics" "grDevices" "utils"
## [16] "datasets" "methods" "base"
##
## [[3]]
## [1] "flextable" "modelsummary" "lubridate" "forcats" "stringr"
## [6] "dplyr" "purrr" "readr" "tidyr" "tibble"
## [11] "ggplot2" "tidyverse" "stats" "graphics" "grDevices"
## [16] "utils" "datasets" "methods" "base"
##
## [[4]]
## [1] "fst" "flextable" "modelsummary" "lubridate" "forcats"
## [6] "stringr" "dplyr" "purrr" "readr" "tidyr"
## [11] "tibble" "ggplot2" "tidyverse" "stats" "graphics"
## [16] "grDevices" "utils" "datasets" "methods" "base"
##
## [[5]]
## [1] "viridis" "viridisLite" "fst" "flextable" "modelsummary"
## [6] "lubridate" "forcats" "stringr" "dplyr" "purrr"
## [11] "readr" "tidyr" "tibble" "ggplot2" "tidyverse"
## [16] "stats" "graphics" "grDevices" "utils" "datasets"
## [21] "methods" "base"
##
## [[6]]
## [1] "knitr" "viridis" "viridisLite" "fst" "flextable"
## [6] "modelsummary" "lubridate" "forcats" "stringr" "dplyr"
## [11] "purrr" "readr" "tidyr" "tibble" "ggplot2"
## [16] "tidyverse" "stats" "graphics" "grDevices" "utils"
## [21] "datasets" "methods" "base"
##
## [[7]]
## [1] "kableExtra" "knitr" "viridis" "viridisLite" "fst"
## [6] "flextable" "modelsummary" "lubridate" "forcats" "stringr"
## [11] "dplyr" "purrr" "readr" "tidyr" "tibble"
## [16] "ggplot2" "tidyverse" "stats" "graphics" "grDevices"
## [21] "utils" "datasets" "methods" "base"
##
## [[8]]
## [1] "rmarkdown" "kableExtra" "knitr" "viridis" "viridisLite"
## [6] "fst" "flextable" "modelsummary" "lubridate" "forcats"
## [11] "stringr" "dplyr" "purrr" "readr" "tidyr"
## [16] "tibble" "ggplot2" "tidyverse" "stats" "graphics"
## [21] "grDevices" "utils" "datasets" "methods" "base"
##
## [[9]]
## [1] "ggridges" "rmarkdown" "kableExtra" "knitr" "viridis"
## [6] "viridisLite" "fst" "flextable" "modelsummary" "lubridate"
## [11] "forcats" "stringr" "dplyr" "purrr" "readr"
## [16] "tidyr" "tibble" "ggplot2" "tidyverse" "stats"
## [21] "graphics" "grDevices" "utils" "datasets" "methods"
## [26] "base"
##
## [[10]]
## [1] "questionr" "ggridges" "rmarkdown" "kableExtra" "knitr"
## [6] "viridis" "viridisLite" "fst" "flextable" "modelsummary"
## [11] "lubridate" "forcats" "stringr" "dplyr" "purrr"
## [16] "readr" "tidyr" "tibble" "ggplot2" "tidyverse"
## [21] "stats" "graphics" "grDevices" "utils" "datasets"
## [26] "methods" "base"
spain_data <- read.fst("spain_data.fst")
table(spain_data$hinctnta)
##
## 1 2 3 4 5 6 7 8 9 10 77 88 99
## 1069 1289 1396 1400 1185 1041 908 786 772 707 1990 1251 390
table(spain_data$edulvlb)
##
## 0 113 129 213 222 229 311 313 322 421 520 620 720 800 5555 7777
## 987 1865 86 2484 532 7 552 928 302 609 383 1205 1475 122 10 6
## 8888 9999
## 6 49
table(spain_data$health)
##
## 1 2 3 4 5 7 8 9
## 3564 8538 5297 1793 239 6 3 12
spain_clean <- spain_data %>%
mutate(
hinctnta = ifelse(hinctnta %in% c(77, 88, 99), NA, hinctnta),
health = ifelse(health %in% c(7, 8, 9), NA, health),
edulvlb = ifelse(edulvlb %in% c(5555, 7777, 8888, 9999), NA, edulvlb),
)
spain_clean <- spain_clean %>% filter(!is.na(hinctnta), !is.na(edulvlb), !is.na(health))
table(spain_clean$hinctnta)
##
## 1 2 3 4 5 6 7 8 9 10
## 933 1131 1124 1109 949 908 754 689 690 609
table(spain_clean$health)
##
## 1 2 3 4 5
## 1600 3810 2588 797 101
table_summary <- datasummary_skim(spain_clean %>% select(hinctnta, edulvlb, health))
table_summary
| Unique (#) | Missing (%) | Mean | SD | Min | Median | Max | ||
|---|---|---|---|---|---|---|---|---|
| hinctnta | 10 | 0 | 5.0 | 2.7 | 1.0 | 5.0 | 10.0 | |
| edulvlb | 14 | 0 | 333.6 | 232.9 | 0.0 | 222.0 | 800.0 | |
| health | 5 | 0 | 2.3 | 0.9 | 1.0 | 2.0 | 5.0 |
spain_clean <- spain_clean %>%
# Relabeling variables for clarity
mutate(
Income = hinctnta,
Education = edulvlb,
Health = health,
)
values_table_v2 <- datasummary_skim(spain_clean %>% select(Income, Education, Health))
values_table_v2
| Unique (#) | Missing (%) | Mean | SD | Min | Median | Max | ||
|---|---|---|---|---|---|---|---|---|
| Income | 10 | 0 | 5.0 | 2.7 | 1.0 | 5.0 | 10.0 | |
| Education | 14 | 0 | 333.6 | 232.9 | 0.0 | 222.0 | 800.0 | |
| Health | 5 | 0 | 2.3 | 0.9 | 1.0 | 2.0 | 5.0 |
table1 <- datasummary_skim(spain_clean %>% dplyr::select(Health, Income, Education), title = "Table 1. Descriptive statistics of Income, Education & Health Variable", output = "flextable")
## Warning: The histogram argument is only supported for (a) output types "default",
## "html", "kableExtra", or "gt"; (b) writing to file paths with extensions
## ".html", ".jpg", or ".png"; and (c) Rmarkdown, knitr or Quarto documents
## compiled to PDF (via kableExtra) or HTML (via kableExtra or gt). Use
## `histogram=FALSE` to silence this warning.
table1
| Unique (#) | Missing (%) | Mean | SD | Min | Median | Max |
|---|---|---|---|---|---|---|---|
Health | 5 | 0 | 2.3 | 0.9 | 1.0 | 2.0 | 5.0 |
Income | 10 | 0 | 5.0 | 2.7 | 1.0 | 5.0 | 10.0 |
Education | 14 | 0 | 333.6 | 232.9 | 0.0 | 222.0 | 800.0 |