who_data <- read.csv("https://raw.githubusercontent.com/RonBalaban/CUNY-SPS-R/main/who.csv")
head(who_data)
## Country LifeExp InfantSurvival Under5Survival TBFree PropMD
## 1 Afghanistan 42 0.835 0.743 0.99769 0.000228841
## 2 Albania 71 0.985 0.983 0.99974 0.001143127
## 3 Algeria 71 0.967 0.962 0.99944 0.001060478
## 4 Andorra 82 0.997 0.996 0.99983 0.003297297
## 5 Angola 41 0.846 0.740 0.99656 0.000070400
## 6 Antigua and Barbuda 73 0.990 0.989 0.99991 0.000142857
## PropRN PersExp GovtExp TotExp
## 1 0.000572294 20 92 112
## 2 0.004614439 169 3128 3297
## 3 0.002091362 108 5184 5292
## 4 0.003500000 2589 169725 172314
## 5 0.001146162 36 1620 1656
## 6 0.002773810 503 12543 13046
plot(who_data, main="WHO Variable Correlation")
library(ggplot2)
## Warning: package 'ggplot2' was built under R version 4.3.3
# Scatterplot
ggplot(who_data, aes(x= LifeExp, y= TotExp))+
geom_point() +
labs(x = "Average Life Expectancy", y = "Total Average Healthcare Expenditure") +
geom_smooth(method=lm)
## `geom_smooth()` using formula = 'y ~ x'
# Make simple linear regression
Lexp_Texp.lm <- lm(LifeExp~TotExp, data=who_data)
# Histogram of residual values
hist(resid(Lexp_Texp.lm), main = "Residuals Histogram", xlab = "Residuals")
#Q-Q plot
qqnorm(Lexp_Texp.lm$residuals)
qqline(Lexp_Texp.lm$residuals)
# Get summary of our model
summary(Lexp_Texp.lm)
##
## Call:
## lm(formula = LifeExp ~ TotExp, data = who_data)
##
## Residuals:
## Min 1Q Median 3Q Max
## -24.764 -4.778 3.154 7.116 13.292
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 6.475e+01 7.535e-01 85.933 < 2e-16 ***
## TotExp 6.297e-05 7.795e-06 8.079 7.71e-14 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 9.371 on 188 degrees of freedom
## Multiple R-squared: 0.2577, Adjusted R-squared: 0.2537
## F-statistic: 65.26 on 1 and 188 DF, p-value: 7.714e-14
The Multiple R-squared value is \(0.2577\), and the Adjusted R-squared is \(0.2537\), meaning that this model accounts for only 25% of the variance within the data. Upon visual inspection we can see that we barely need to change Total Average Healthcare Expenditure as Average Life Expectancy rises, but that skyrockets as individuals get older. 25% isn’t a very good model for describing the measured data, so we need further analysis besides single linear regression.
For a good model, we’d want the standard error to be at least 5-10 times smaller than its corresponding coefficient (Linear Regression Using R, Pg. 21). The standard error for TotExp is \(7.795e-06\), and the coefficient is \(6.297e-05\). Dividing the coefficient by the standard error gives a ratio of \(8.079\). This ratio, known as the test-statistic or t-value, means that there is relatively little variability in the slope estimate, which is true apart from the high peak when we approach a value of 80 for LifeExp.
The p-value is \(7.71e-14\), which is very small, and that means there’s a tiny chance of observing a t-value equal to or greater than \(8.079\). Since this value is tiny, we can see there’s strong evidence of a linear relationship between total expenditure and life expectancy (for the most part, besides when we approach 80).
The F-statistic is \(65.26\), which compares the current model (using the variable ‘TotExp’), to a model that only has the intercept parameter (Linear Regression Using R, Pg. 23).
Looking at both the numbers above, as well as the plots, it’s sufficient to say there is no constant variability, and that the residuals aren’t normally distributed. Hence, a single linear regression is not a good model to describe the relationship between LifeExp and TotExp.
# Needed transformations
life4.6 <- who_data$LifeExp^4.6
texp.06 <- who_data$TotExp^0.06
# Re-run simple regression model with transformed variables
fit2.lm <- lm(life4.6 ~ texp.06)
summary(fit2.lm)
##
## Call:
## lm(formula = life4.6 ~ texp.06)
##
## Residuals:
## Min 1Q Median 3Q Max
## -308616089 -53978977 13697187 59139231 211951764
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -736527910 46817945 -15.73 <2e-16 ***
## texp.06 620060216 27518940 22.53 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 90490000 on 188 degrees of freedom
## Multiple R-squared: 0.7298, Adjusted R-squared: 0.7283
## F-statistic: 507.7 on 1 and 188 DF, p-value: < 2.2e-16
# Scatterplot
plot(life4.6~texp.06,
xlab="Total Average Healthcare Expenditure", ylab="Average Life Expectancy",
main="Total Expenditures vs Life Expectancy (Transformed)")
abline(fit2.lm)
# Residuals
hist(resid(fit2.lm), main = "Histogram of Residuals", xlab = "residuals")
plot(fitted(fit2.lm), resid(fit2.lm))
# QQ plot
qqnorm(fit2.lm$residuals)
qqline(fit2.lm$residuals)
lexp_forecast <- function(x)
{ y <- -736527910 + 620060216*x
y <- y^(1/4.6) #Recall that we raised life4.6 <- who_data$LifeExp^4.6
print(y)
}
#Compute
lexp_forecast(1.5) # 63.31153
## [1] 63.31153
lexp_forecast(2.5) # 86.50645
## [1] 86.50645
# Multiple regression model
fit3.lm <- lm(LifeExp ~ PropMD + TotExp + PropMD*TotExp, data = who_data)
summary(fit3.lm)
##
## Call:
## lm(formula = LifeExp ~ PropMD + TotExp + PropMD * TotExp, data = who_data)
##
## Residuals:
## Min 1Q Median 3Q Max
## -27.320 -4.132 2.098 6.540 13.074
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 6.277e+01 7.956e-01 78.899 < 2e-16 ***
## PropMD 1.497e+03 2.788e+02 5.371 2.32e-07 ***
## TotExp 7.233e-05 8.982e-06 8.053 9.39e-14 ***
## PropMD:TotExp -6.026e-03 1.472e-03 -4.093 6.35e-05 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 8.765 on 186 degrees of freedom
## Multiple R-squared: 0.3574, Adjusted R-squared: 0.3471
## F-statistic: 34.49 on 3 and 186 DF, p-value: < 2.2e-16
# Plots
hist(resid(fit3.lm), xlab = "residuals")
plot(fitted(fit3.lm), resid(fit3.lm))
The model with additional predictors and interaction terms is better than the original model (Lexp_Texp.lm). The 3 variables; PropMD, TotExp, and PropMD*TotExp all have small p-values. However, the R^2 values are only 35%, and the F-statistic is not as large as the prior model (fit2). The residuals themselves have a strong right skew and show an inconsistent variance and non-normal distribution. The p-value is small, which is statically significant. This linear model is better than the first, but worse than the second.
# Test date
test_data <- data.frame(TotExp = c(14), PropMD = c(.03))
# Predict life expectancy from model
predicted_life_exp <- predict(fit3.lm, newdata = test_data)
print(predicted_life_exp)
## 1
## 107.696