Descriptives
- Manufacturing
- Healthcare
- Engineering
- Real Estate
- Sales
- Retail
- Tech
- Entertainment and Sports
- Government
- Finance
- Accounting
- Military
- Pharmaceutical
- e-Commerce
data_social_good <- data %>%
select(ResponseId, industry_social_good_2:industry_social_good_15, FL_8_DO, politicalIdeology, ZSB_DO) %>%
pivot_longer(cols = industry_social_good_2:industry_social_good_15,
names_to = "industry",
values_to = "value") %>%
mutate(value = as.numeric(value)) %>%
rename(socialgood = value) %>%
separate(industry, into = c("termindustry", "termsocial", "termgood", "industry"), sep = "_") %>%
select(ResponseId, industry, socialgood, FL_8_DO, politicalIdeology)
summary_social <- data_social_good %>%
group_by(industry) %>%
summarise(mean(socialgood, na.rm = T)) %>%
ungroup()
# Least = Government, most = Engineering
data_zsb <- data %>%
mutate(zsb_2_all = ifelse(ZSB_DO == "zsb_1", zsb_2,
ifelse(ZSB_DO == "zsb_2", zsb_2.1,
ifelse(ZSB_DO == "zsb_3", zsb_2.2,
ifelse(ZSB_DO == "zsb_4", zsb_2.3, NA))))) %>%
mutate(zsb_3_all = ifelse(ZSB_DO == "zsb_1", zsb_3,
ifelse(ZSB_DO == "zsb_2", zsb_3.1,
ifelse(ZSB_DO == "zsb_3", zsb_3.2,
ifelse(ZSB_DO == "zsb_4", zsb_3.3, NA))))) %>%
mutate(zsb_4_all = ifelse(ZSB_DO == "zsb_1", zsb_4,
ifelse(ZSB_DO == "zsb_2", zsb_4.1,
ifelse(ZSB_DO == "zsb_3", zsb_4.2,
ifelse(ZSB_DO == "zsb_4", zsb_4.3, NA))))) %>%
mutate(zsb_5_all = ifelse(ZSB_DO == "zsb_1", zsb_5,
ifelse(ZSB_DO == "zsb_2", zsb_5.1,
ifelse(ZSB_DO == "zsb_3", zsb_5.2,
ifelse(ZSB_DO == "zsb_4", zsb_5.3, NA))))) %>%
mutate(zsb_6_all = ifelse(ZSB_DO == "zsb_1", zsb_6,
ifelse(ZSB_DO == "zsb_2", zsb_6.1,
ifelse(ZSB_DO == "zsb_3", zsb_6.2,
ifelse(ZSB_DO == "zsb_4", zsb_6.3, NA))))) %>%
mutate(zsb_7_all = ifelse(ZSB_DO == "zsb_1", zsb_7,
ifelse(ZSB_DO == "zsb_2", zsb_7.1,
ifelse(ZSB_DO == "zsb_3", zsb_7.2,
ifelse(ZSB_DO == "zsb_4", zsb_7.3, NA))))) %>%
mutate(zsb_8_all = ifelse(ZSB_DO == "zsb_1", zsb_8,
ifelse(ZSB_DO == "zsb_2", zsb_8.1,
ifelse(ZSB_DO == "zsb_3", zsb_8.2,
ifelse(ZSB_DO == "zsb_4", zsb_8.3, NA))))) %>%
mutate(zsb_9_all = ifelse(ZSB_DO == "zsb_1", zsb_9,
ifelse(ZSB_DO == "zsb_2", zsb_9.1,
ifelse(ZSB_DO == "zsb_3", zsb_9.2,
ifelse(ZSB_DO == "zsb_4", zsb_9.3, NA))))) %>%
mutate(zsb_10_all = ifelse(ZSB_DO == "zsb_1", zsb_10,
ifelse(ZSB_DO == "zsb_2", zsb_10.1,
ifelse(ZSB_DO == "zsb_3", zsb_10.2,
ifelse(ZSB_DO == "zsb_4", zsb_10.3, NA))))) %>%
mutate(zsb_11_all = ifelse(ZSB_DO == "zsb_1", zsb_11,
ifelse(ZSB_DO == "zsb_2", zsb_11.1,
ifelse(ZSB_DO == "zsb_3", zsb_11.2,
ifelse(ZSB_DO == "zsb_4", zsb_11.3, NA))))) %>%
mutate(zsb_12_all = ifelse(ZSB_DO == "zsb_1", zsb_12,
ifelse(ZSB_DO == "zsb_2", zsb_12.1,
ifelse(ZSB_DO == "zsb_3", zsb_12.2,
ifelse(ZSB_DO == "zsb_4", zsb_12.3, NA))))) %>%
mutate(zsb_13_all = ifelse(ZSB_DO == "zsb_1", zsb_13,
ifelse(ZSB_DO == "zsb_2", zsb_13.1,
ifelse(ZSB_DO == "zsb_3", zsb_13.2,
ifelse(ZSB_DO == "zsb_4", zsb_13.3, NA))))) %>%
mutate(zsb_14_all = ifelse(ZSB_DO == "zsb_1", zsb_14,
ifelse(ZSB_DO == "zsb_2", zsb_14.1,
ifelse(ZSB_DO == "zsb_3", zsb_14.2,
ifelse(ZSB_DO == "zsb_4", zsb_14.3, NA))))) %>%
mutate(zsb_15_all = ifelse(ZSB_DO == "zsb_1", zsb_15,
ifelse(ZSB_DO == "zsb_2", zsb_15.1,
ifelse(ZSB_DO == "zsb_3", zsb_15.2,
ifelse(ZSB_DO == "zsb_4", zsb_15.3, NA))))) %>%
select(ResponseId, zsb_2_all:zsb_15_all, FL_8_DO, politicalIdeology, ZSB_DO, orgType) %>%
pivot_longer(cols = zsb_2_all:zsb_15_all,
names_to = "industry",
values_to = "value") %>%
mutate(value = as.numeric(value)) %>%
rename(zsb = value) %>%
separate(industry, into = c("termzsb", "industry"), sep = "_") %>%
select(ResponseId, industry, zsb, FL_8_DO, politicalIdeology, ZSB_DO, orgType)
## Warning: Expected 2 pieces. Additional pieces discarded in 5404 rows [1, 2, 3, 4, 5, 6,
## 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, ...].
summary_zsb <- data_zsb %>%
group_by(industry) %>%
summarise(mean(zsb, na.rm = T)) %>%
ungroup()
# Least = Healthcare, most = Government