APIM & APIMeM

Jeong Eun Cheon


Preparing for the analysis

Read in data

library(tidyverse)
## Warning: package 'ggplot2' was built under R version 4.3.2
Study1 <- read_csv("Study1Data.csv")
Study2 <- read_csv("Study2Data.csv")

Using data from Cultice et al. (2022), we will explore path analysis alongside the APIM and APIMeM models (i.e., actor-partner interdependence mediation model; Ledermann et al., 2011), aiming to replicate their findings.

  • References:

Cultice, R. A., Sanchez, D. T., & Albuja, A. F. (2022). Sexual growth mindsets and rejection sensitivity in sexual satisfaction. Journal of Social and Personal Relationships, 39(4), 1131-1153. https://doi.org/10.1177/02654075211054390

Ledermann, T., Macho, S., & Kenny, D. A. (2011). Assessing mediation in dyadic data using the actor-partner interdependence model. Structural Equation Modeling: A Multidisciplinary Journal, 18(4), 595-612. https://doi.org/10.1080/10705511.2011.607099

Basics

  • multivariate normality
  • outlier
  • collinearity
  • reliability
  • missing

multivariate normality

The Maximum Likelihood (ML) method is the most commonly used for Structural Equation Modeling (SEM) and it is often presumed that all continuous variables in the model are normally distributed across their multivariate relationship. However, when this assumption of multivariate normality isn’t met, as might be the case if some continuous variables exhibit skewness or kurtosis, it can lead to inaccurate results if ML is applied without adjustments. Specifically, the standard errors associated with the model’s parameters may be underestimated, which could result in an increased risk of Type I errors (incorrectly rejecting a true null hypothesis). The estimated values of the model parameters themselves, such as factor loadings, path coefficients, and correlations, can remain stable even when normality is not present.

Evaluating normality in data, crucial for many statistical analyses, involves checking both the univariate and multivariate normality (multivariate normality is related to univariate normality). For univariate assessments, it is important to look for outliers, skewness, and kurtosis in the distribution of each variable. When it comes to multivariate distributions, people commonly investigate Mardia’s Coefficient (scores above 3.00 suggest a deviation from normality) and Mahalanobis Distance/Cook’s distance.

options: QQplot, Shaprio-Wilk, skewness, kurtosis …

-West, Finch, & Curran (1995) suggest that skewness > 2 and kurtosis > 7 indicate nonnormality. Kline(2011): skewness > 3, kurtosis > 10 -z test Z_skewness = (Skewness / SE_skewness) Z_kurtosis = (Kurtosis / SE_kurtosis) skew/SE< |1.96|, kurtosis/SE< |1.96| skew/SE< |2|, kurtosis/SE< |2|

also refer to: https://centerstat.org/can-i-estimate-an-sem-if-the-sample-data-are-not-normally-distributed/#:~:text=First%2C%20the%20assumption%20of%20normality,likelihood%20(ML)%20estimator%20does.

qqnorm(Study1$SexSatisfaction, pch = 1, frame = FALSE)
qqline(Study1$SexSatisfaction, col = "steelblue", lwd = 2)

shapiro.test(Study1$SexSatisfaction)
## 
##  Shapiro-Wilk normality test
## 
## data:  Study1$SexSatisfaction
## W = 0.77517, p-value < 0.00000000000000022
shapiro.test(Study1$SexSatisfaction)
## 
##  Shapiro-Wilk normality test
## 
## data:  Study1$SexSatisfaction
## W = 0.77517, p-value < 0.00000000000000022
library(mvnormalTest )
## Warning: package 'mvnormalTest' was built under R version 4.3.3
mardia(Study1$SexSatisfaction)
## $mv.test
##           Test Statistic p-value Result
## 1     Skewness  197.7441       0     NO
## 2     Kurtosis   13.3237       0     NO
## 3 MV Normality      <NA>    <NA>     NO
## 
## $uv.shapiro
##           W      p-value UV.Normality
## statistic 0.7752 0       No
library(psych)
describe(Study1$SexSatisfaction)
##    vars   n mean   sd median trimmed  mad min max range  skew kurtosis   se
## X1    1 375 6.12 1.14    6.6    6.34 0.59   1   7     6 -1.77     3.32 0.06
hist(Study1$SexSatisfaction)

yet… Lei and Lomax (2005) explored the impact of nonnormality in structural equation modeling (SEM) and found that the condition of nonnormality doesn’t notably affect the standard errors of parameter estimates across different sample sizes or estimation methods. Notably, standard errors for dependent variables were consistently lower than those for independent variables, implying that estimates for dependent variables tend to be more precise. While sample size and estimation method (whether Maximum Likelihood or Generalized Least Squares) showed minimal influence on the bias of parameter estimates for independent variables, they did have an impact on dependent variables, with larger samples leading to reduced bias in parameter estimates. Additionally, nonnormality affected parameter estimates more significantly in smaller samples.

reference:

Lei, M., & Lomax, R. G. (2005). The effect of varying degrees of nonnormality in structural equation modeling. Structural equation modeling, 12(1), 1-27. https://doi.org/10.1207/s15328007sem1201_1

outlier

boxplot(Study1$Growth, main="Growth", ylab="Values")

out <- boxplot.stats(Study1$Growth)$out
out_ind <- which(Study1$Growth %in% c(out)) #extract the row number corresponding to outliers
out_ind
## integer(0)
library(performance)
## Warning: package 'performance' was built under R version 4.3.2
check_outliers(Study1$Growth)
## OK: No outliers detected.
## - Based on the following method and threshold: zscore_robust (3.291).
## - For variable: Study1$Growth
# or calculate how many standard deviations it falls from the mean.
mean_growth <- mean(Study1$Growth, na.rm = TRUE)
sd_growth <- sd(Study1$Growth, na.rm = TRUE)
# Calculate the z-scores
z_scores <- abs((Study1$Growth - mean_growth) / sd_growth)
# Identify outliers
outliers <- z_scores > 3

# Subset the dataset to remove outliers
#Study1_no_outliers <- Study1[!outliers, ]
#filtered <- subset(Study1, Study1$Growth > 3)

collinearity

library(psych)
corr.test(Study1[c("Growth", "Growth_Partner")])
## Call:corr.test(x = Study1[c("Growth", "Growth_Partner")])
## Correlation matrix 
##                Growth Growth_Partner
## Growth           1.00           0.77
## Growth_Partner   0.77           1.00
## Sample Size 
##                Growth Growth_Partner
## Growth            375            374
## Growth_Partner    374            374
## Probability values (Entries above the diagonal are adjusted for multiple tests.) 
##                Growth Growth_Partner
## Growth              0              0
## Growth_Partner      0              0
## 
##  To see confidence intervals of the correlations, print with the short=FALSE option

reliaiblity

library(psych)
alpha(Study1[,c("Growth","Growth_Partner")]) #just as an illustrative example
## 
## Reliability analysis   
## Call: alpha(x = Study1[, c("Growth", "Growth_Partner")])
## 
##   raw_alpha std.alpha G6(smc) average_r S/N   ase mean  sd median_r
##       0.87      0.87    0.77      0.77 6.7 0.013  4.5 1.4     0.77
## 
##     95% confidence boundaries 
##          lower alpha upper
## Feldt     0.84  0.87  0.89
## Duhachek  0.84  0.87  0.90
## 
##  Reliability if an item is dropped:
##                raw_alpha std.alpha G6(smc) average_r S/N alpha se var.r med.r
## Growth              0.74      0.77    0.59      0.77 3.4       NA     0  0.77
## Growth_Partner      0.80      0.77    0.59      0.77 3.4       NA     0  0.77
## 
##  Item statistics 
##                  n raw.r std.r r.cor r.drop mean  sd
## Growth         375  0.94  0.94  0.83   0.77  4.6 1.5
## Growth_Partner 374  0.94  0.94  0.83   0.77  4.5 1.5

missing

sum(is.na(Study1$Growth))
## [1] 2
summary(is.na(Study1$Growth))
##    Mode   FALSE    TRUE 
## logical     375       2

There are several ways to deal with missing values

  • Listwise deletion: Involves removing any cases (rows) with missing values in any variable from the analysis.

  • Full Information Maximum Likelihood (FIML): FIML is an approach directly incorporated into the estimation process of SEM that uses all available data to estimate model parameters without needing to impute missing values beforehand. It operates under the assumption that data are missing at random (MAR), meaning that the probability of missing data on a variable is related to other observed variables but not to the values of the variable itself.

  • Multiple Imputation (MI): Multiple Imputation involves replacing each missing value with a set of plausible values to generate multiple complete datasets.

Study 1

Path analysis: Replicating Cultice et al. (2022) Study 1’s findings

library(lavaan)

Study1model <- 'SexSatisfaction ~ Rejection
         SexSatisfaction ~ Rejection_Partner
         
         Rejection ~ Growth
         Rejection ~ Growth_Partner
         
         Rejection_Partner ~ Growth_Partner
         Rejection_Partner ~ Growth
         
         Growth  ~~ Growth_Partner
         Rejection ~~ Rejection_Partner

'

Study1modelout <- sem(Study1model, data=Study1, test="bootstrap", bootstrap=100)
summary(Study1modelout, fit.measures = TRUE, standardize=TRUE, rsquare=TRUE, ci = TRUE)
## lavaan 0.6.16 ended normally after 26 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        13
## 
##                                                   Used       Total
##   Number of observations                           374         377
## 
## Model Test User Model:
##                                                       
##   Test statistic                                 1.957
##   Degrees of freedom                                 2
##   P-value (Chi-square)                           0.376
##                                                       
##   Test statistic                                 1.957
##   Degrees of freedom                                 2
##   P-value (Bollen-Stine bootstrap)               0.430
## 
## Model Test Baseline Model:
## 
##   Test statistic                               570.772
##   Degrees of freedom                                10
##   P-value                                        0.000
## 
## User Model versus Baseline Model:
## 
##   Comparative Fit Index (CFI)                    1.000
##   Tucker-Lewis Index (TLI)                       1.000
## 
## Loglikelihood and Information Criteria:
## 
##   Loglikelihood user model (H0)              -3587.638
##   Loglikelihood unrestricted model (H1)      -3586.659
##                                                       
##   Akaike (AIC)                                7201.276
##   Bayesian (BIC)                              7252.291
##   Sample-size adjusted Bayesian (SABIC)       7211.046
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.000
##   90 Percent confidence interval - lower         0.000
##   90 Percent confidence interval - upper         0.102
##   P-value H_0: RMSEA <= 0.050                    0.647
##   P-value H_0: RMSEA >= 0.080                    0.137
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.008
## 
## Parameter Estimates:
## 
##   Standard errors                             Standard
##   Information                                 Expected
##   Information saturated (h1) model          Structured
## 
## Regressions:
##                       Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper
##   SexSatisfaction ~                                                        
##     Rejection           -0.067    0.011   -6.397    0.000   -0.088   -0.047
##     Rejectin_Prtnr      -0.020    0.039   -0.496    0.620   -0.097    0.058
##   Rejection ~                                                              
##     Growth              -0.247    0.324   -0.762    0.446   -0.881    0.388
##     Growth_Partner      -1.030    0.311   -3.309    0.001   -1.640   -0.420
##   Rejection_Partner ~                                                      
##     Growth_Partner      -0.245    0.084   -2.905    0.004   -0.410   -0.080
##     Growth              -0.049    0.088   -0.554    0.579   -0.220    0.123
##    Std.lv  Std.all
##                   
##    -0.067   -0.364
##    -0.020   -0.028
##                   
##    -0.247   -0.059
##    -1.030   -0.256
##                   
##    -0.245   -0.228
##    -0.049   -0.043
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper
##   Growth ~~                                                             
##     Growth_Partner    1.739    0.147   11.813    0.000    1.450    2.027
##  .Rejection ~~                                                          
##    .Rejectin_Prtnr    4.684    0.539    8.692    0.000    3.628    5.740
##    Std.lv  Std.all
##                   
##     1.739    0.771
##                   
##     4.684    0.503
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper
##    .SexSatisfactin    1.110    0.081   13.675    0.000    0.951    1.269
##    .Rejection        34.352    2.512   13.675    0.000   29.429   39.276
##    .Rejectin_Prtnr    2.523    0.185   13.675    0.000    2.161    2.885
##     Growth            2.168    0.159   13.675    0.000    1.857    2.479
##     Growth_Partner    2.343    0.171   13.675    0.000    2.008    2.679
##    Std.lv  Std.all
##     1.110    0.855
##    34.352    0.908
##     2.523    0.931
##     2.168    1.000
##     2.343    1.000
## 
## R-Square:
##                    Estimate
##     SexSatisfactin    0.145
##     Rejection         0.092
##     Rejectin_Prtnr    0.069
fitMeasures(Study1modelout)
##                  npar                  fmin                 chisq 
##                13.000                 0.003                 1.957 
##                    df                pvalue        baseline.chisq 
##                 2.000                 0.376               570.772 
##           baseline.df       baseline.pvalue                   cfi 
##                10.000                 0.000                 1.000 
##                   tli                  nnfi                   rfi 
##                 1.000                 1.000                 0.983 
##                   nfi                  pnfi                   ifi 
##                 0.997                 0.199                 1.000 
##                   rni                  logl     unrestricted.logl 
##                 1.000             -3587.638             -3586.659 
##                   aic                   bic                ntotal 
##              7201.276              7252.291               374.000 
##                  bic2                 rmsea        rmsea.ci.lower 
##              7211.046                 0.000                 0.000 
##        rmsea.ci.upper        rmsea.ci.level          rmsea.pvalue 
##                 0.102                 0.900                 0.647 
##        rmsea.close.h0 rmsea.notclose.pvalue     rmsea.notclose.h0 
##                 0.050                 0.137                 0.080 
##                   rmr            rmr_nomean                  srmr 
##                 0.014                 0.014                 0.008 
##          srmr_bentler   srmr_bentler_nomean                  crmr 
##                 0.008                 0.008                 0.010 
##           crmr_nomean            srmr_mplus     srmr_mplus_nomean 
##                 0.010                 0.008                 0.008 
##                 cn_05                 cn_01                   gfi 
##              1145.840              1760.897                 0.998 
##                  agfi                  pgfi                   mfi 
##                 0.984                 0.133                 1.000 
##                  ecvi 
##                 0.075
library(lavaan)

Study1model2 <- 'SexSatisfaction ~ a2*Rejection
         SexSatisfaction ~ p2*Rejection_Partner
         
         Rejection ~ a1*Growth
         Rejection ~ ap1*Growth_Partner
         
         Rejection_Partner ~ p1*Growth_Partner
         Rejection_Partner ~ pa1*Growth
         
         Growth  ~~ Growth_Partner
         Rejection ~~ Rejection_Partner
         
         ind1 := a1*a2
         ind2 := p1*p2
         ind3 := ap1*p2
         ind4 := pa1*a2

'

Study1model2out <- sem(Study1model2, data=Study1, test="bootstrap", bootstrap=100)

summary(Study1model2out, fit.measures = TRUE, standardize=TRUE, rsquare=TRUE, ci = TRUE)
## lavaan 0.6.16 ended normally after 26 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        13
## 
##                                                   Used       Total
##   Number of observations                           374         377
## 
## Model Test User Model:
##                                                       
##   Test statistic                                 1.957
##   Degrees of freedom                                 2
##   P-value (Chi-square)                           0.376
##                                                       
##   Test statistic                                 1.957
##   Degrees of freedom                                 2
##   P-value (Bollen-Stine bootstrap)               0.380
## 
## Model Test Baseline Model:
## 
##   Test statistic                               570.772
##   Degrees of freedom                                10
##   P-value                                        0.000
## 
## User Model versus Baseline Model:
## 
##   Comparative Fit Index (CFI)                    1.000
##   Tucker-Lewis Index (TLI)                       1.000
## 
## Loglikelihood and Information Criteria:
## 
##   Loglikelihood user model (H0)              -3587.638
##   Loglikelihood unrestricted model (H1)      -3586.659
##                                                       
##   Akaike (AIC)                                7201.276
##   Bayesian (BIC)                              7252.291
##   Sample-size adjusted Bayesian (SABIC)       7211.046
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.000
##   90 Percent confidence interval - lower         0.000
##   90 Percent confidence interval - upper         0.102
##   P-value H_0: RMSEA <= 0.050                    0.647
##   P-value H_0: RMSEA >= 0.080                    0.137
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.008
## 
## Parameter Estimates:
## 
##   Standard errors                             Standard
##   Information                                 Expected
##   Information saturated (h1) model          Structured
## 
## Regressions:
##                       Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper
##   SexSatisfaction ~                                                        
##     Rejectin  (a2)      -0.067    0.011   -6.397    0.000   -0.088   -0.047
##     Rjctn_Pr  (p2)      -0.020    0.039   -0.496    0.620   -0.097    0.058
##   Rejection ~                                                              
##     Growth    (a1)      -0.247    0.324   -0.762    0.446   -0.881    0.388
##     Grwth_Pr (ap1)      -1.030    0.311   -3.309    0.001   -1.640   -0.420
##   Rejection_Partner ~                                                      
##     Grwth_Pr  (p1)      -0.245    0.084   -2.905    0.004   -0.410   -0.080
##     Growth   (pa1)      -0.049    0.088   -0.554    0.579   -0.220    0.123
##    Std.lv  Std.all
##                   
##    -0.067   -0.364
##    -0.020   -0.028
##                   
##    -0.247   -0.059
##    -1.030   -0.256
##                   
##    -0.245   -0.228
##    -0.049   -0.043
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper
##   Growth ~~                                                             
##     Growth_Partner    1.739    0.147   11.813    0.000    1.450    2.027
##  .Rejection ~~                                                          
##    .Rejectin_Prtnr    4.684    0.539    8.692    0.000    3.628    5.740
##    Std.lv  Std.all
##                   
##     1.739    0.771
##                   
##     4.684    0.503
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper
##    .SexSatisfactin    1.110    0.081   13.675    0.000    0.951    1.269
##    .Rejection        34.352    2.512   13.675    0.000   29.429   39.276
##    .Rejectin_Prtnr    2.523    0.185   13.675    0.000    2.161    2.885
##     Growth            2.168    0.159   13.675    0.000    1.857    2.479
##     Growth_Partner    2.343    0.171   13.675    0.000    2.008    2.679
##    Std.lv  Std.all
##     1.110    0.855
##    34.352    0.908
##     2.523    0.931
##     2.168    1.000
##     2.343    1.000
## 
## R-Square:
##                    Estimate
##     SexSatisfactin    0.145
##     Rejection         0.092
##     Rejectin_Prtnr    0.069
## 
## Defined Parameters:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper
##     ind1              0.017    0.022    0.757    0.449   -0.026    0.060
##     ind2              0.005    0.010    0.489    0.625   -0.014    0.024
##     ind3              0.020    0.041    0.490    0.624   -0.060    0.101
##     ind4              0.003    0.006    0.552    0.581   -0.008    0.015
##    Std.lv  Std.all
##     0.017    0.021
##     0.005    0.006
##     0.020    0.007
##     0.003    0.016
fitMeasures(Study1modelout)
##                  npar                  fmin                 chisq 
##                13.000                 0.003                 1.957 
##                    df                pvalue        baseline.chisq 
##                 2.000                 0.376               570.772 
##           baseline.df       baseline.pvalue                   cfi 
##                10.000                 0.000                 1.000 
##                   tli                  nnfi                   rfi 
##                 1.000                 1.000                 0.983 
##                   nfi                  pnfi                   ifi 
##                 0.997                 0.199                 1.000 
##                   rni                  logl     unrestricted.logl 
##                 1.000             -3587.638             -3586.659 
##                   aic                   bic                ntotal 
##              7201.276              7252.291               374.000 
##                  bic2                 rmsea        rmsea.ci.lower 
##              7211.046                 0.000                 0.000 
##        rmsea.ci.upper        rmsea.ci.level          rmsea.pvalue 
##                 0.102                 0.900                 0.647 
##        rmsea.close.h0 rmsea.notclose.pvalue     rmsea.notclose.h0 
##                 0.050                 0.137                 0.080 
##                   rmr            rmr_nomean                  srmr 
##                 0.014                 0.014                 0.008 
##          srmr_bentler   srmr_bentler_nomean                  crmr 
##                 0.008                 0.008                 0.010 
##           crmr_nomean            srmr_mplus     srmr_mplus_nomean 
##                 0.010                 0.008                 0.008 
##                 cn_05                 cn_01                   gfi 
##              1145.840              1760.897                 0.998 
##                  agfi                  pgfi                   mfi 
##                 0.984                 0.133                 1.000 
##                  ecvi 
##                 0.075
standardizedSolution(Study1model2out, type = "std.all", se = TRUE, zstat = TRUE, 
                     pvalue = TRUE, ci = TRUE, level = 0.95)
##                  lhs op               rhs label est.std    se      z pvalue
## 1    SexSatisfaction  ~         Rejection    a2  -0.364 0.054 -6.719  0.000
## 2    SexSatisfaction  ~ Rejection_Partner    p2  -0.028 0.057 -0.496  0.620
## 3          Rejection  ~            Growth    a1  -0.059 0.077 -0.763  0.446
## 4          Rejection  ~    Growth_Partner   ap1  -0.256 0.076 -3.354  0.001
## 5  Rejection_Partner  ~    Growth_Partner    p1  -0.228 0.078 -2.936  0.003
## 6  Rejection_Partner  ~            Growth   pa1  -0.043 0.078 -0.555  0.579
## 7             Growth ~~    Growth_Partner         0.771 0.021 36.857  0.000
## 8          Rejection ~~ Rejection_Partner         0.503 0.039 13.027  0.000
## 9    SexSatisfaction ~~   SexSatisfaction         0.855 0.034 25.434  0.000
## 10         Rejection ~~         Rejection         0.908 0.029 31.799  0.000
## 11 Rejection_Partner ~~ Rejection_Partner         0.931 0.025 36.792  0.000
## 12            Growth ~~            Growth         1.000 0.000     NA     NA
## 13    Growth_Partner ~~    Growth_Partner         1.000 0.000     NA     NA
## 14              ind1 :=             a1*a2  ind1   0.021 0.028  0.757  0.449
## 15              ind2 :=             p1*p2  ind2   0.006 0.013  0.489  0.625
## 16              ind3 :=            ap1*p2  ind3   0.007 0.015  0.491  0.624
## 17              ind4 :=            pa1*a2  ind4   0.016 0.029  0.553  0.581
##    ci.lower ci.upper
## 1    -0.470   -0.258
## 2    -0.140    0.083
## 3    -0.211    0.093
## 4    -0.406   -0.107
## 5    -0.380   -0.076
## 6    -0.197    0.110
## 7     0.730    0.813
## 8     0.427    0.579
## 9     0.790    0.921
## 10    0.852    0.963
## 11    0.881    0.981
## 12    1.000    1.000
## 13    1.000    1.000
## 14   -0.034    0.077
## 15   -0.019    0.032
## 16   -0.022    0.036
## 17   -0.040    0.072

Controling for sexual frequency

hist(Study1$SexFrequency)

Study1model3 <- 'SexSatisfaction ~ a2*Rejection
         SexSatisfaction ~ p2*Rejection_Partner
         
         Rejection ~ a1*Growth
         Rejection ~ ap1*Growth_Partner
         
         Rejection_Partner ~ p1*Growth_Partner
         Rejection_Partner ~ pa1*Growth
         
         Growth  ~~ Growth_Partner
         Rejection ~~ Rejection_Partner
         
         Rejection ~ SexFrequency
         Rejection_Partner ~ SexFrequency
         SexSatisfaction ~ SexFrequency
         
         Growth ~~ SexFrequency
         Growth_Partner ~~ SexFrequency
         
         ind1 := a1*a2
         ind2 := p1*p2
         ind3 := ap1*a2
         ind4 := pa1*p2

'

Study1model3out <- sem(Study1model3, data=Study1, test="bootstrap", bootstrap=100)
summary(Study1model3out, fit.measures = TRUE, standardize=TRUE, rsquare=TRUE, ci = TRUE)
## lavaan 0.6.16 ended normally after 41 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        19
## 
##                                                   Used       Total
##   Number of observations                           361         377
## 
## Model Test User Model:
##                                                       
##   Test statistic                                 1.881
##   Degrees of freedom                                 2
##   P-value (Chi-square)                           0.390
##                                                       
##   Test statistic                                 1.881
##   Degrees of freedom                                 2
##   P-value (Bollen-Stine bootstrap)               0.470
## 
## Model Test Baseline Model:
## 
##   Test statistic                               556.672
##   Degrees of freedom                                15
##   P-value                                        0.000
## 
## User Model versus Baseline Model:
## 
##   Comparative Fit Index (CFI)                    1.000
##   Tucker-Lewis Index (TLI)                       1.002
## 
## Loglikelihood and Information Criteria:
## 
##   Loglikelihood user model (H0)              -4419.388
##   Loglikelihood unrestricted model (H1)      -4418.447
##                                                       
##   Akaike (AIC)                                8876.775
##   Bayesian (BIC)                              8950.664
##   Sample-size adjusted Bayesian (SABIC)       8890.386
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.000
##   90 Percent confidence interval - lower         0.000
##   90 Percent confidence interval - upper         0.102
##   P-value H_0: RMSEA <= 0.050                    0.652
##   P-value H_0: RMSEA >= 0.080                    0.138
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.007
## 
## Parameter Estimates:
## 
##   Standard errors                             Standard
##   Information                                 Expected
##   Information saturated (h1) model          Structured
## 
## Regressions:
##                       Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper
##   SexSatisfaction ~                                                        
##     Rejectin  (a2)      -0.063    0.011   -6.040    0.000   -0.084   -0.043
##     Rjctn_Pr  (p2)      -0.017    0.040   -0.435    0.663   -0.095    0.060
##   Rejection ~                                                              
##     Growth    (a1)      -0.323    0.326   -0.989    0.323   -0.963    0.317
##     Grwth_Pr (ap1)      -0.985    0.313   -3.149    0.002   -1.598   -0.372
##   Rejection_Partner ~                                                      
##     Grwth_Pr  (p1)      -0.228    0.085   -2.690    0.007   -0.393   -0.062
##     Growth   (pa1)      -0.045    0.088   -0.508    0.611   -0.218    0.128
##   Rejection ~                                                              
##     SxFrqncy            -0.247    0.087   -2.832    0.005   -0.418   -0.076
##   Rejection_Partner ~                                                      
##     SxFrqncy            -0.009    0.024   -0.401    0.688   -0.056    0.037
##   SexSatisfaction ~                                                        
##     SxFrqncy             0.041    0.015    2.684    0.007    0.011    0.072
##    Std.lv  Std.all
##                   
##    -0.063   -0.349
##    -0.017   -0.025
##                   
##    -0.323   -0.077
##    -0.985   -0.243
##                   
##    -0.228   -0.213
##    -0.045   -0.040
##                   
##    -0.247   -0.142
##                   
##    -0.009   -0.021
##                   
##     0.041    0.131
## 
## Covariances:
##                     Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper
##   Growth ~~                                                              
##     Growth_Partner     1.712    0.148   11.544    0.000    1.421    2.003
##  .Rejection ~~                                                           
##    .Rejectin_Prtnr     4.685    0.545    8.597    0.000    3.617    5.753
##   Growth ~~                                                              
##     SexFrequency      -0.581    0.275   -2.109    0.035   -1.121   -0.041
##   Growth_Partner ~~                                                      
##     SexFrequency      -0.458    0.286   -1.602    0.109   -1.019    0.102
##    Std.lv  Std.all
##                   
##     1.712    0.765
##                   
##     4.685    0.507
##                   
##    -0.581   -0.112
##                   
##    -0.458   -0.085
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper
##    .SexSatisfactin    1.059    0.079   13.435    0.000    0.905    1.214
##    .Rejection        34.143    2.541   13.435    0.000   29.162   39.124
##    .Rejectin_Prtnr    2.497    0.186   13.435    0.000    2.133    2.861
##     Growth            2.151    0.160   13.435    0.000    1.837    2.465
##     Growth_Partner    2.329    0.173   13.435    0.000    1.989    2.669
##     SexFrequency     12.581    0.936   13.435    0.000   10.746   14.416
##    Std.lv  Std.all
##     1.059    0.841
##    34.143    0.895
##     2.497    0.940
##     2.151    1.000
##     2.329    1.000
##    12.581    1.000
## 
## R-Square:
##                    Estimate
##     SexSatisfactin    0.159
##     Rejection         0.105
##     Rejectin_Prtnr    0.060
## 
## Defined Parameters:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper
##     ind1              0.020    0.021    0.976    0.329   -0.021    0.062
##     ind2              0.004    0.009    0.430    0.667   -0.014    0.022
##     ind3              0.063    0.022    2.792    0.005    0.019    0.106
##     ind4              0.001    0.002    0.331    0.741   -0.004    0.005
##    Std.lv  Std.all
##     0.020    0.027
##     0.004    0.005
##     0.063    0.085
##     0.001    0.001
fitMeasures(Study1model3out)
##                  npar                  fmin                 chisq 
##                19.000                 0.003                 1.881 
##                    df                pvalue        baseline.chisq 
##                 2.000                 0.390               556.672 
##           baseline.df       baseline.pvalue                   cfi 
##                15.000                 0.000                 1.000 
##                   tli                  nnfi                   rfi 
##                 1.002                 1.002                 0.975 
##                   nfi                  pnfi                   ifi 
##                 0.997                 0.133                 1.000 
##                   rni                  logl     unrestricted.logl 
##                 1.000             -4419.388             -4418.447 
##                   aic                   bic                ntotal 
##              8876.775              8950.664               361.000 
##                  bic2                 rmsea        rmsea.ci.lower 
##              8890.386                 0.000                 0.000 
##        rmsea.ci.upper        rmsea.ci.level          rmsea.pvalue 
##                 0.102                 0.900                 0.652 
##        rmsea.close.h0 rmsea.notclose.pvalue     rmsea.notclose.h0 
##                 0.050                 0.138                 0.080 
##                   rmr            rmr_nomean                  srmr 
##                 0.012                 0.012                 0.007 
##          srmr_bentler   srmr_bentler_nomean                  crmr 
##                 0.007                 0.007                 0.008 
##           crmr_nomean            srmr_mplus     srmr_mplus_nomean 
##                 0.008                 0.007                 0.007 
##                 cn_05                 cn_01                   gfi 
##              1150.832              1768.572                 0.998 
##                  agfi                  pgfi                   mfi 
##                 0.982                 0.095                 1.000 
##                  ecvi 
##                 0.110
parameterestimates(Study1model3out, ci=TRUE) 
##                  lhs op               rhs label    est    se      z pvalue
## 1    SexSatisfaction  ~         Rejection    a2 -0.063 0.011 -6.040  0.000
## 2    SexSatisfaction  ~ Rejection_Partner    p2 -0.017 0.040 -0.435  0.663
## 3          Rejection  ~            Growth    a1 -0.323 0.326 -0.989  0.323
## 4          Rejection  ~    Growth_Partner   ap1 -0.985 0.313 -3.149  0.002
## 5  Rejection_Partner  ~    Growth_Partner    p1 -0.228 0.085 -2.690  0.007
## 6  Rejection_Partner  ~            Growth   pa1 -0.045 0.088 -0.508  0.611
## 7             Growth ~~    Growth_Partner        1.712 0.148 11.544  0.000
## 8          Rejection ~~ Rejection_Partner        4.685 0.545  8.597  0.000
## 9          Rejection  ~      SexFrequency       -0.247 0.087 -2.832  0.005
## 10 Rejection_Partner  ~      SexFrequency       -0.009 0.024 -0.401  0.688
## 11   SexSatisfaction  ~      SexFrequency        0.041 0.015  2.684  0.007
## 12            Growth ~~      SexFrequency       -0.581 0.275 -2.109  0.035
## 13    Growth_Partner ~~      SexFrequency       -0.458 0.286 -1.602  0.109
## 14   SexSatisfaction ~~   SexSatisfaction        1.059 0.079 13.435  0.000
## 15         Rejection ~~         Rejection       34.143 2.541 13.435  0.000
## 16 Rejection_Partner ~~ Rejection_Partner        2.497 0.186 13.435  0.000
## 17            Growth ~~            Growth        2.151 0.160 13.435  0.000
## 18    Growth_Partner ~~    Growth_Partner        2.329 0.173 13.435  0.000
## 19      SexFrequency ~~      SexFrequency       12.581 0.936 13.435  0.000
## 20              ind1 :=             a1*a2  ind1  0.020 0.021  0.976  0.329
## 21              ind2 :=             p1*p2  ind2  0.004 0.009  0.430  0.667
## 22              ind3 :=            ap1*a2  ind3  0.063 0.022  2.792  0.005
## 23              ind4 :=            pa1*p2  ind4  0.001 0.002  0.331  0.741
##    ci.lower ci.upper
## 1    -0.084   -0.043
## 2    -0.095    0.060
## 3    -0.963    0.317
## 4    -1.598   -0.372
## 5    -0.393   -0.062
## 6    -0.218    0.128
## 7     1.421    2.003
## 8     3.617    5.753
## 9    -0.418   -0.076
## 10   -0.056    0.037
## 11    0.011    0.072
## 12   -1.121   -0.041
## 13   -1.019    0.102
## 14    0.905    1.214
## 15   29.162   39.124
## 16    2.133    2.861
## 17    1.837    2.465
## 18    1.989    2.669
## 19   10.746   14.416
## 20   -0.021    0.062
## 21   -0.014    0.022
## 22    0.019    0.106
## 23   -0.004    0.005

from Cultice et al. (2022), pages 1139-1140:

“Next, we tested the hypothesized model. The model indicated good fit, \(\chi^2\) (2, \(N = 361\)) = 1.88, \(p = .39\), CFI = 1.0, TLI = 1.0, RMSEA = .00, SRMR = .01, AIC = 8888.78 (see Figure 2). Greater perceived partner sexual growth mindset was associated with lower (own) sexual rejection sensitivity (\(\beta = -0.24, p = .002\)) and lower perceptions of partner’s rejection sensitivity (\(\beta = -0.21, p = .02\)). However, there was no relationship between participants’ own sexual growth mindset and own or perceived partner’s sexual rejection sensitivity. Further, the indirect effect from own sexual growth mindset to sexual satisfaction through rejection sensitivity was not significant, \(\beta = 0.03, p = .31, 95\% CI [-0.03, 0.08]\); however, the indirect effect from perceived partner sexual growth mindset to sexual satisfaction through rejection sensitivity was significant, \(\beta = 0.09, p = .006, 95\% CI [0.02, 0.15]\). This suggests that when both participants’ own and their perceived partner’s sexual growth mindset is considered, a person’s sexual rejection sensitivity is associated more strongly with how they perceive their partner’s sexual growth mindset, and less strongly with their own sexual growth mindset. Higher (own) sexual rejection sensitivity significantly predicted lower sexual satisfaction (\(\beta = -0.35, p < .001\)); however, the path from perceived partner’s sexual rejection sensitivity to sexual satisfaction did not. Finally, sexual frequency was associated with lower sexual rejection sensitivity and greater overall sexual satisfaction.”

  • p.s. modification index
modindices(Study1model3out, sort = TRUE, maximum.number = 5)
##                lhs op             rhs    mi    epc sepc.lv sepc.all sepc.nox
## 27 SexSatisfaction ~~  Growth_Partner 1.776  0.072   0.072    0.046    0.046
## 46  Growth_Partner  ~ SexSatisfaction 1.776  0.068   0.068    0.050    0.050
## 26 SexSatisfaction ~~          Growth 1.538 -0.063  -0.063   -0.042   -0.042
## 41          Growth  ~ SexSatisfaction 1.538 -0.060  -0.060   -0.046   -0.046
## 36 SexSatisfaction  ~  Growth_Partner 0.361  0.023   0.023    0.031    0.031

The MI value indicates the potential improvement in model fit if the specified parameter is added to the model. Higher values suggest greater potential for improvement.

Study2

Actor-partner interdependence model (APIM)

Let’s investigate whether sexual growth mindset is related to sexual satisfaction in couples.

Variable explanation

Growth_F = female sexual growth mindset Growth_M = male sexual growth mindset

SexSatisfaction_F = female sexual satisfaction SexSatisfaction_M = male sexual satisfaction

library(lavaan)

APIM <- 'SexSatisfaction_F ~ Growth_F
         SexSatisfaction_F ~ Growth_M
         
         SexSatisfaction_M ~ Growth_M
         SexSatisfaction_M ~ Growth_F

'

APIMout <- sem(APIM, data=Study2)
summary(APIMout, fit.measures = TRUE, standardize=TRUE, rsquare=TRUE, ci = TRUE)
## lavaan 0.6.16 ended normally after 19 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                         7
## 
##   Number of observations                           104
## 
## Model Test User Model:
##                                                       
##   Test statistic                                 0.000
##   Degrees of freedom                                 0
## 
## Model Test Baseline Model:
## 
##   Test statistic                                96.197
##   Degrees of freedom                                 5
##   P-value                                        0.000
## 
## User Model versus Baseline Model:
## 
##   Comparative Fit Index (CFI)                    1.000
##   Tucker-Lewis Index (TLI)                       1.000
## 
## Loglikelihood and Information Criteria:
## 
##   Loglikelihood user model (H0)               -242.501
##   Loglikelihood unrestricted model (H1)       -242.501
##                                                       
##   Akaike (AIC)                                 499.002
##   Bayesian (BIC)                               517.513
##   Sample-size adjusted Bayesian (SABIC)        495.400
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.000
##   90 Percent confidence interval - lower         0.000
##   90 Percent confidence interval - upper         0.000
##   P-value H_0: RMSEA <= 0.050                       NA
##   P-value H_0: RMSEA >= 0.080                       NA
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.000
## 
## Parameter Estimates:
## 
##   Standard errors                             Standard
##   Information                                 Expected
##   Information saturated (h1) model          Structured
## 
## Regressions:
##                       Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper
##   SexSatisfaction_F ~                                                      
##     Growth_F             0.020    0.085    0.240    0.810   -0.146    0.187
##     Growth_M            -0.023    0.083   -0.279    0.781   -0.185    0.139
##   SexSatisfaction_M ~                                                      
##     Growth_M             0.044    0.071    0.625    0.532   -0.095    0.183
##     Growth_F            -0.056    0.073   -0.760    0.447   -0.199    0.088
##    Std.lv  Std.all
##                   
##     0.020    0.029
##    -0.023   -0.034
##                   
##     0.044    0.076
##    -0.056   -0.092
## 
## Covariances:
##                        Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper
##  .SexSatisfaction_F ~~                                                      
##    .SexSatisfctn_M        0.739    0.118    6.247    0.000    0.507    0.971
##    Std.lv  Std.all
##                   
##     0.739    0.775
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper
##    .SexSatisfctn_F    1.110    0.154    7.211    0.000    0.808    1.411
##    .SexSatisfctn_M    0.820    0.114    7.211    0.000    0.597    1.043
##    Std.lv  Std.all
##     1.110    0.999
##     0.820    0.994
## 
## R-Square:
##                    Estimate
##     SexSatisfctn_F    0.001
##     SexSatisfctn_M    0.006
fitMeasures(APIMout)
##                  npar                  fmin                 chisq 
##                 7.000                 0.000                 0.000 
##                    df                pvalue        baseline.chisq 
##                 0.000                    NA                96.197 
##           baseline.df       baseline.pvalue                   cfi 
##                 5.000                 0.000                 1.000 
##                   tli                  nnfi                   rfi 
##                 1.000                 1.000                 1.000 
##                   nfi                  pnfi                   ifi 
##                 1.000                 0.000                 1.000 
##                   rni                  logl     unrestricted.logl 
##                 1.000              -242.501              -242.501 
##                   aic                   bic                ntotal 
##               499.002               517.513               104.000 
##                  bic2                 rmsea        rmsea.ci.lower 
##               495.400                 0.000                 0.000 
##        rmsea.ci.upper        rmsea.ci.level          rmsea.pvalue 
##                 0.000                 0.900                    NA 
##        rmsea.close.h0 rmsea.notclose.pvalue     rmsea.notclose.h0 
##                 0.050                    NA                 0.080 
##                   rmr            rmr_nomean                  srmr 
##                 0.000                 0.000                 0.000 
##          srmr_bentler   srmr_bentler_nomean                  crmr 
##                 0.000                 0.000                 0.000 
##           crmr_nomean            srmr_mplus     srmr_mplus_nomean 
##                 0.000                 0.000                 0.000 
##                 cn_05                 cn_01                   gfi 
##                 1.000                 1.000                 1.000 
##                  agfi                  pgfi                   mfi 
##                 1.000                 0.000                 1.000 
##                  ecvi 
##                 0.135

In an Actor-Partner Interdependence Model (APIM) analysis of sexual satisfaction among 104 couples, sexual growth mindset was modeled as a predictor for both female and male partners’ reported sexual satisfaction.

The regression coefficients for the paths from sexual growth mindset to sexual satisfaction were not statistically significant for either partner. For females, the effect of their own growth on sexual satisfaction was estimated at \(\hat{\beta} = 0.020\), \(SE = 0.085\), \(z = 0.240\), \(p = .810\), and for the effect of male partners’ growth on female sexual satisfaction, \(\hat{\beta} = -0.023\), \(SE = 0.083\), \(z = -0.279\), \(p = .781\). For males, their own sexual growth mindset predicted sexual satisfaction with an estimate of \(\hat{\beta} = 0.044\), \(SE = 0.071\), \(z = 0.625\), \(p = .532\), and the effect of female sexual growth mindset on male sexual satisfaction was \(\hat{\beta} = -0.056\), \(SE = 0.073\), \(z = -0.760\), \(p = .447\).

The R-squared values indicated that the model explained 0.1% of the variance in female sexual satisfaction and 0.6% of the variance in male sexual satisfaction.

APIMeM

corr.test(Study2[c("SexFrequency_F", "SexFrequency_M")])
## Call:corr.test(x = Study2[c("SexFrequency_F", "SexFrequency_M")])
## Correlation matrix 
##                SexFrequency_F SexFrequency_M
## SexFrequency_F           1.00           0.91
## SexFrequency_M           0.91           1.00
## Sample Size 
## [1] 104
## Probability values (Entries above the diagonal are adjusted for multiple tests.) 
##                SexFrequency_F SexFrequency_M
## SexFrequency_F              0              0
## SexFrequency_M              0              0
## 
##  To see confidence intervals of the correlations, print with the short=FALSE option
library(lavaan)


Study1model4 <- 'SexSatisfaction_F ~ fa2*Rejection_F
         SexSatisfaction_F ~ mp2*Rejection_M
         
         SexSatisfaction_M ~ ma2*Rejection_M
         SexSatisfaction_M ~ fp2*Rejection_F
         
         Rejection_F ~ fa1*Growth_F
         Rejection_F ~ mp1*Growth_M
         
         Rejection_M ~ ma1*Growth_M
         Rejection_M ~ fp1*Growth_F
         
         Growth_M ~~ Growth_F
         Rejection_M ~~ Rejection_F
         SexSatisfaction_M ~~ SexSatisfaction_F
         
         Rejection_M ~ SexFrequency_M
         Rejection_F ~ SexFrequency_M
         SexSatisfaction_M ~ SexFrequency_M
         SexSatisfaction_F ~ SexFrequency_M 
         
         SexFrequency_M ~~ Growth_F
         SexFrequency_M ~~ Growth_M
         
         
         ind1 := fa1*fa2
         ind2 := ma1*ma2
         ind3 := fa1*fp2
         ind4 := fp1*ma2
         ind5 := mp1*fa2  # and so on...

'


Study1model4out <- sem(Study1model4, data=Study2, test="bootstrap", bootstrap=100)
summary(Study1model4out, fit.measures = TRUE, standardize=TRUE, rsquare=TRUE, ci = TRUE)
## lavaan 0.6.16 ended normally after 44 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        24
## 
##   Number of observations                           104
## 
## Model Test User Model:
##                                                       
##   Test statistic                                 5.045
##   Degrees of freedom                                 4
##   P-value (Chi-square)                           0.283
##                                                       
##   Test statistic                                 5.045
##   Degrees of freedom                                 4
##   P-value (Bollen-Stine bootstrap)               0.250
## 
## Model Test Baseline Model:
## 
##   Test statistic                               263.212
##   Degrees of freedom                                21
##   P-value                                        0.000
## 
## User Model versus Baseline Model:
## 
##   Comparative Fit Index (CFI)                    0.996
##   Tucker-Lewis Index (TLI)                       0.977
## 
## Loglikelihood and Information Criteria:
## 
##   Loglikelihood user model (H0)              -1320.895
##   Loglikelihood unrestricted model (H1)      -1318.373
##                                                       
##   Akaike (AIC)                                2689.790
##   Bayesian (BIC)                              2753.255
##   Sample-size adjusted Bayesian (SABIC)       2677.439
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.050
##   90 Percent confidence interval - lower         0.000
##   90 Percent confidence interval - upper         0.163
##   P-value H_0: RMSEA <= 0.050                    0.409
##   P-value H_0: RMSEA >= 0.080                    0.423
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.031
## 
## Parameter Estimates:
## 
##   Standard errors                             Standard
##   Information                                 Expected
##   Information saturated (h1) model          Structured
## 
## Regressions:
##                       Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper
##   SexSatisfaction_F ~                                                      
##     Rejctn_F (fa2)      -0.047    0.020   -2.427    0.015   -0.086   -0.009
##     Rejctn_M (mp2)      -0.034    0.019   -1.787    0.074   -0.071    0.003
##   SexSatisfaction_M ~                                                      
##     Rejctn_M (ma2)      -0.039    0.016   -2.357    0.018   -0.071   -0.007
##     Rejctn_F (fp2)      -0.038    0.017   -2.253    0.024   -0.071   -0.005
##   Rejection_F ~                                                            
##     Growth_F (fa1)      -0.689    0.377   -1.826    0.068   -1.428    0.051
##     Growth_M (mp1)      -0.783    0.360   -2.176    0.030   -1.489   -0.078
##   Rejection_M ~                                                            
##     Growth_M (ma1)      -0.408    0.380   -1.075    0.282   -1.153    0.336
##     Growth_F (fp1)      -0.822    0.398   -2.064    0.039   -1.602   -0.041
##     SxFrqn_M            -1.610    0.527   -3.054    0.002   -2.643   -0.576
##   Rejection_F ~                                                            
##     SxFrqn_M            -1.347    0.500   -2.696    0.007   -2.326   -0.368
##   SexSatisfaction_M ~                                                      
##     SxFrqn_M             0.361    0.081    4.479    0.000    0.203    0.519
##   SexSatisfaction_F ~                                                      
##     SxFrqn_M             0.462    0.093    4.960    0.000    0.280    0.645
##    Std.lv  Std.all
##                   
##    -0.047   -0.229
##    -0.034   -0.170
##                   
##    -0.039   -0.225
##    -0.038   -0.213
##                   
##    -0.689   -0.204
##    -0.783   -0.239
##                   
##    -0.408   -0.121
##    -0.822   -0.235
##    -1.610   -0.281
##                   
##    -1.347   -0.243
##                   
##     0.361    0.365
##                   
##     0.462    0.403
## 
## Covariances:
##                        Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper
##   Growth_F ~~                                                               
##     Growth_M              1.383    0.266    5.191    0.000    0.861    1.905
##  .Rejection_F ~~                                                            
##    .Rejection_M          10.136    2.397    4.229    0.000    5.439   14.834
##  .SexSatisfaction_F ~~                                                      
##    .SexSatisfctn_M        0.405    0.073    5.554    0.000    0.262    0.547
##   Growth_F ~~                                                               
##     SexFrequency_M       -0.269    0.138   -1.944    0.052   -0.540    0.002
##   Growth_M ~~                                                               
##     SexFrequency_M       -0.110    0.140   -0.786    0.432   -0.386    0.165
##    Std.lv  Std.all
##                   
##     1.383    0.591
##                   
##    10.136    0.456
##                   
##     0.405    0.649
##                   
##    -0.269   -0.194
##                   
##    -0.110   -0.077
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper
##    .SexSatisfctn_F    0.721    0.100    7.211    0.000    0.525    0.916
##    .SexSatisfctn_M    0.539    0.075    7.211    0.000    0.392    0.685
##    .Rejection_F      21.078    2.923    7.211    0.000   15.349   26.808
##    .Rejection_M      23.467    3.254    7.211    0.000   17.088   29.845
##     Growth_F          2.268    0.315    7.211    0.000    1.651    2.884
##     Growth_M          2.410    0.334    7.211    0.000    1.755    3.065
##     SexFrequency_M    0.846    0.117    7.211    0.000    0.616    1.076
##    Std.lv  Std.all
##     0.721    0.649
##     0.539    0.653
##    21.078    0.813
##    23.467    0.848
##     2.268    1.000
##     2.410    1.000
##     0.846    1.000
## 
## R-Square:
##                    Estimate
##     SexSatisfctn_F    0.351
##     SexSatisfctn_M    0.347
##     Rejection_F       0.187
##     Rejection_M       0.152
## 
## Defined Parameters:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper
##     ind1              0.033    0.022    1.459    0.145   -0.011    0.076
##     ind2              0.016    0.016    0.978    0.328   -0.016    0.048
##     ind3              0.026    0.018    1.419    0.156   -0.010    0.062
##     ind4              0.032    0.021    1.553    0.120   -0.008    0.072
##     ind5              0.037    0.023    1.620    0.105   -0.008    0.082
##    Std.lv  Std.all
##     0.033    0.047
##     0.016    0.027
##     0.026    0.043
##     0.032    0.053
##     0.037    0.055

similar results have been reported in Cultice et al. (2022), page 1143:

“Next, we tested the model using the Actor-Partner Interdependence Model (APIM). As in Study 1, sex frequency was a predictor of sexual rejection sensitivity and sexual satisfaction. All exogenous variables were correlated. This model demonstrated good fit, \(\chi^2\) (4, \(N = 104\)) = 5.05, \(p = .28\), CFI = 1.0, TLI = .98, RMSEA = .05, SRMR = .03, AIC = 2703.79 (see Figure 3).

As in Study 1, partner growth mindset predicted one’s own sexual rejection sensitivity. Uniquely, in Study 2, perceived partner growth mindset was replaced with actual partner growth mindsets. For both men (\(\beta = -0.24, p = .04\)) and women (\(\beta = -0.24, p = .02\)), having a partner who had a greater sexual growth mindset predicted less sexual rejection sensitivity for oneself. For women, their own sexual rejection sensitivity was associated with lower sexual satisfaction for themselves (\(\beta = -0.23, p = .03\)), but men’s sexual rejection sensitivity was not a significant predictor of their own sexual satisfaction. For men and women, sexual frequency was associated with lower sexual rejection sensitivity for themselves and their partners and overall greater sexual satisfaction in both members of the couple.

Finally, no indirect effects were significant in Study 2. For women, neither the indirect paths from own sexual growth mindset, \(\beta = 0.05, p = .17\), 95% CI \([0.00, 0.14]\), nor partner’s sexual growth mindset, \(\beta = 0.06, p = .12\), 95% CI \([0.01, 0.15]\), to sexual satisfaction through rejection sensitivity were significant. The same pattern emerged for men: neither the indirect paths from own sexual growth mindset, \(\beta = 0.02, p = .41\), 95% CI \([-0.01, 0.10]\), nor partner’s sexual growth mindset, \(\beta = 0.04, p = .24\), 95% CI \([0.00, 0.14]\), to sexual satisfaction through rejection sensitivity were significant.”