tvhours_by_relig <- gss_cat %>%
group_by(relig) %>%
summarise(
avg_tvhours = mean(tvhours, na.rm = TRUE))
tvhours_by_relig %>%
ggplot(aes(x = avg_tvhours, y = relig)) +
geom_point()
tvhours_by_relig %>%
ggplot(aes(x = avg_tvhours, y = fct_reorder(.f = relig, .x = avg_tvhours))) +
geom_point() +
labs(y = NULL, x = "Mean Daily Hours Watching TV")
#moving single level to front
tvhours_by_relig %>%
ggplot(aes(x = avg_tvhours, y = fct_reorder(.f = relig, .x = avg_tvhours) %>% fct_relevel("Don't know"))) +
geom_point() +
labs(y = NULL, x = "Mean Daily Hours Watching TV")
gss_cat %>% distinct(race)
## # A tibble: 3 × 1
## race
## <fct>
## 1 White
## 2 Black
## 3 Other
gss_cat %>%
mutate(race_rev = fct_recode(race, "African American" = "Black")) %>%
select(race, race_rev) %>%
filter(race == "Black")
## # A tibble: 3,129 × 2
## race race_rev
## <fct> <fct>
## 1 Black African American
## 2 Black African American
## 3 Black African American
## 4 Black African American
## 5 Black African American
## 6 Black African American
## 7 Black African American
## 8 Black African American
## 9 Black African American
## 10 Black African American
## # ℹ 3,119 more rows
gss_cat %>%
mutate(race_col = fct_collapse(race, "Minority" = c("Black","Other"))) %>%
select(race, race_col) %>%
filter(race !="White")
## # A tibble: 5,088 × 2
## race race_col
## <fct> <fct>
## 1 Black Minority
## 2 Black Minority
## 3 Black Minority
## 4 Other Minority
## 5 Black Minority
## 6 Other Minority
## 7 Black Minority
## 8 Other Minority
## 9 Black Minority
## 10 Black Minority
## # ℹ 5,078 more rows
gss_cat %>% count(race)
## # A tibble: 3 × 2
## race n
## <fct> <int>
## 1 Other 1959
## 2 Black 3129
## 3 White 16395
gss_cat %>% mutate(race_lump = fct_lump(race)) %>% distinct(race_lump)
## # A tibble: 2 × 1
## race_lump
## <fct>
## 1 White
## 2 Other
"2022-10-28" %>% ymd()
## [1] "2022-10-28"
20221028 %>% ymd()
## [1] "2022-10-28"
"2022-10-28 4-41-30" %>% ymd_hms()
## [1] "2022-10-28 04:41:30 UTC"
flights %>%
select(year:day, hour, minute) %>%
mutate(departure = make_datetime(year = year, month = month, day = day, hour = hour, min = minute))
## # A tibble: 336,776 × 6
## year month day hour minute departure
## <int> <int> <int> <dbl> <dbl> <dttm>
## 1 2013 1 1 5 15 2013-01-01 05:15:00
## 2 2013 1 1 5 29 2013-01-01 05:29:00
## 3 2013 1 1 5 40 2013-01-01 05:40:00
## 4 2013 1 1 5 45 2013-01-01 05:45:00
## 5 2013 1 1 6 0 2013-01-01 06:00:00
## 6 2013 1 1 5 58 2013-01-01 05:58:00
## 7 2013 1 1 6 0 2013-01-01 06:00:00
## 8 2013 1 1 6 0 2013-01-01 06:00:00
## 9 2013 1 1 6 0 2013-01-01 06:00:00
## 10 2013 1 1 6 0 2013-01-01 06:00:00
## # ℹ 336,766 more rows
today() %>% as_datetime()
## [1] "2024-04-10 UTC"
now() %>% as_date()
## [1] "2024-04-10"
date_time <- ymd_hms("2022-10-28 18-18-18")
date_time
## [1] "2022-10-28 18:18:18 UTC"
year(date_time)
## [1] 2022
month(date_time)
## [1] 10
yday(date_time)
## [1] 301
mday(date_time)
## [1] 28
wday(date_time, label = TRUE, abbr = FALSE)
## [1] Friday
## 7 Levels: Sunday < Monday < Tuesday < Wednesday < Thursday < ... < Saturday
make_datetime_100 <- function(year, month, day, time) {
make_datetime(year, month, day, time %/% 100, time %% 100)
}
flights_dt <- flights %>%
filter(!is.na(dep_time), !is.na(arr_time)) %>%
mutate(
dep_time = make_datetime_100(year, month, day, dep_time),
arr_time = make_datetime_100(year, month, day, arr_time),
sched_dep_time = make_datetime_100(year, month, day, sched_dep_time),
sched_arr_time = make_datetime_100(year, month, day, sched_arr_time)
) %>%
select(origin, dest, ends_with("delay"), ends_with("time"))
flights_dt %>%
transmute(wday = wday(dep_time, label = TRUE)) %>%
ggplot(aes(wday)) +
geom_bar()
# floor
flights_dt %>%
mutate(week = floor_date(dep_time, "month")) %>%
select(dep_time, week) %>%
sample_n(10)
## # A tibble: 10 × 2
## dep_time week
## <dttm> <dttm>
## 1 2013-05-16 14:05:00 2013-05-01 00:00:00
## 2 2013-09-01 18:38:00 2013-09-01 00:00:00
## 3 2013-10-10 14:51:00 2013-10-01 00:00:00
## 4 2013-05-13 12:16:00 2013-05-01 00:00:00
## 5 2013-03-27 06:55:00 2013-03-01 00:00:00
## 6 2013-04-02 06:10:00 2013-04-01 00:00:00
## 7 2013-01-22 19:56:00 2013-01-01 00:00:00
## 8 2013-10-10 09:50:00 2013-10-01 00:00:00
## 9 2013-07-02 06:32:00 2013-07-01 00:00:00
## 10 2013-01-17 06:59:00 2013-01-01 00:00:00
# ceiling
flights_dt %>%
mutate(week = ceiling_date(dep_time, "month")) %>%
select(dep_time, week) %>%
sample_n(10)
## # A tibble: 10 × 2
## dep_time week
## <dttm> <dttm>
## 1 2013-11-22 22:04:00 2013-12-01 00:00:00
## 2 2013-08-14 14:58:00 2013-09-01 00:00:00
## 3 2013-08-21 13:57:00 2013-09-01 00:00:00
## 4 2013-12-11 14:07:00 2014-01-01 00:00:00
## 5 2013-09-16 07:44:00 2013-10-01 00:00:00
## 6 2013-12-16 08:29:00 2014-01-01 00:00:00
## 7 2013-12-12 16:19:00 2014-01-01 00:00:00
## 8 2013-05-31 11:05:00 2013-06-01 00:00:00
## 9 2013-08-17 06:54:00 2013-09-01 00:00:00
## 10 2013-07-26 19:41:00 2013-08-01 00:00:00
flights_dt %>%
mutate(dep_hour = update(dep_time, yday = 1)) %>%
select(dep_time, dep_hour) %>%
sample_n(10)
## # A tibble: 10 × 2
## dep_time dep_hour
## <dttm> <dttm>
## 1 2013-05-13 15:41:00 2013-01-01 15:41:00
## 2 2013-06-21 06:29:00 2013-01-01 06:29:00
## 3 2013-10-22 20:10:00 2013-01-01 20:10:00
## 4 2013-05-08 19:47:00 2013-01-01 19:47:00
## 5 2013-11-06 15:55:00 2013-01-01 15:55:00
## 6 2013-05-07 07:31:00 2013-01-01 07:31:00
## 7 2013-11-23 09:01:00 2013-01-01 09:01:00
## 8 2013-02-28 22:05:00 2013-01-01 22:05:00
## 9 2013-02-04 18:26:00 2013-01-01 18:26:00
## 10 2013-01-26 10:51:00 2013-01-01 10:51:00