if (!require(haven)){
install.packages("haven", dependencies = TRUE)
require(haven)
}Loading required package: haven
if (!require(haven)){
install.packages("haven", dependencies = TRUE)
require(haven)
}Loading required package: haven
if (!require(tidyverse)){
install.packages("tidyverse", dependencies = TRUE)
require(tidyverse)
}Loading required package: tidyverse
── Attaching core tidyverse packages ──────────────────────── tidyverse 2.0.0 ──
✔ dplyr 1.1.4 ✔ readr 2.1.5
✔ forcats 1.0.0 ✔ stringr 1.5.1
✔ ggplot2 3.4.4 ✔ tibble 3.2.1
✔ lubridate 1.9.3 ✔ tidyr 1.3.1
✔ purrr 1.0.2
── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
✖ dplyr::filter() masks stats::filter()
✖ dplyr::lag() masks stats::lag()
ℹ Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors
if (!require(afex)){
install.packages("afex", dependencies = TRUE)
require(afex)
}Loading required package: afex
Loading required package: lme4
Loading required package: Matrix
Attaching package: 'Matrix'
The following objects are masked from 'package:tidyr':
expand, pack, unpack
************
Welcome to afex. For support visit: http://afex.singmann.science/
- Functions for ANOVAs: aov_car(), aov_ez(), and aov_4()
- Methods for calculating p-values with mixed(): 'S', 'KR', 'LRT', and 'PB'
- 'afex_aov' and 'mixed' objects can be passed to emmeans() for follow-up tests
- Get and set global package options with: afex_options()
- Set sum-to-zero contrasts globally: set_sum_contrasts()
- For example analyses see: browseVignettes("afex")
************
Attaching package: 'afex'
The following object is masked from 'package:lme4':
lmer
if (!require(summarytools)){
install.packages("summarytools", dependencies = TRUE)
require(summarytools)
}Loading required package: summarytools
Warning in fun(libname, pkgname): couldn't connect to display ":0"
system might not have X11 capabilities; in case of errors when using dfSummary(), set st_options(use.x11 = FALSE)
Attaching package: 'summarytools'
The following object is masked from 'package:tibble':
view
if (!require(psych)){
install.packages("psych", dependencies = TRUE)
require(psych)
}Loading required package: psych
Attaching package: 'psych'
The following objects are masked from 'package:ggplot2':
%+%, alpha
dataset <- read_sav("Psykicks Mindfulness Data.sav")(dataset %>%
filter(Progress > 79) -> dataset.clean)# A tibble: 124 × 44
StartDate EndDate Status IPAddress Progress
<dttm> <dttm> <dbl+lbl> <chr> <dbl>
1 2024-03-13 16:47:14 2024-03-13 16:47:23 0 [IP Address] 73.224.66.184 100
2 2024-03-13 19:17:10 2024-03-13 19:21:25 0 [IP Address] 76.122.42.81 100
3 2024-03-13 19:34:32 2024-03-13 19:45:01 0 [IP Address] 73.6.5.118 100
4 2024-03-13 21:12:43 2024-03-13 21:26:04 0 [IP Address] 92.119.18.122 100
5 2024-03-14 09:56:42 2024-03-14 10:03:37 0 [IP Address] 139.62.222.1… 100
6 2024-03-15 01:31:54 2024-03-15 15:07:03 0 [IP Address] 107.115.224.… 100
7 2024-03-14 11:15:41 2024-03-14 11:24:47 0 [IP Address] 65.87.105.57 97
8 2024-03-14 13:06:19 2024-03-14 13:25:21 0 [IP Address] 166.205.159.… 97
9 2024-03-22 12:31:08 2024-03-22 12:40:46 0 [IP Address] 104.28.32.246 100
10 2024-03-25 17:07:22 2024-03-25 17:15:07 0 [IP Address] 139.62.222.2… 100
# ℹ 114 more rows
# ℹ 39 more variables: Duration__in_seconds_ <dbl>, Finished <dbl+lbl>,
# RecordedDate <dttm>, ResponseId <chr>, RecipientLastName <chr>,
# RecipientFirstName <chr>, RecipientEmail <chr>, ExternalReference <chr>,
# LocationLatitude <chr>, LocationLongitude <chr>, DistributionChannel <chr>,
# UserLanguage <chr>, Informed_Consent <dbl+lbl>, TP_1 <dbl+lbl>,
# TP_3 <dbl+lbl>, TP_4 <dbl+lbl>, TP_5 <dbl+lbl>, TP_2 <dbl+lbl>, …
(dataset.clean %>%
filter(Duration__in_seconds_ > 120) -> dataset.clean)# A tibble: 119 × 44
StartDate EndDate Status IPAddress Progress
<dttm> <dttm> <dbl+lbl> <chr> <dbl>
1 2024-03-13 19:17:10 2024-03-13 19:21:25 0 [IP Address] 76.122.42.81 100
2 2024-03-13 19:34:32 2024-03-13 19:45:01 0 [IP Address] 73.6.5.118 100
3 2024-03-13 21:12:43 2024-03-13 21:26:04 0 [IP Address] 92.119.18.122 100
4 2024-03-14 09:56:42 2024-03-14 10:03:37 0 [IP Address] 139.62.222.1… 100
5 2024-03-15 01:31:54 2024-03-15 15:07:03 0 [IP Address] 107.115.224.… 100
6 2024-03-14 11:15:41 2024-03-14 11:24:47 0 [IP Address] 65.87.105.57 97
7 2024-03-14 13:06:19 2024-03-14 13:25:21 0 [IP Address] 166.205.159.… 97
8 2024-03-22 12:31:08 2024-03-22 12:40:46 0 [IP Address] 104.28.32.246 100
9 2024-03-25 17:07:22 2024-03-25 17:15:07 0 [IP Address] 139.62.222.2… 100
10 2024-03-25 17:53:57 2024-03-25 18:05:40 0 [IP Address] 172.59.67.194 100
# ℹ 109 more rows
# ℹ 39 more variables: Duration__in_seconds_ <dbl>, Finished <dbl+lbl>,
# RecordedDate <dttm>, ResponseId <chr>, RecipientLastName <chr>,
# RecipientFirstName <chr>, RecipientEmail <chr>, ExternalReference <chr>,
# LocationLatitude <chr>, LocationLongitude <chr>, DistributionChannel <chr>,
# UserLanguage <chr>, Informed_Consent <dbl+lbl>, TP_1 <dbl+lbl>,
# TP_3 <dbl+lbl>, TP_4 <dbl+lbl>, TP_5 <dbl+lbl>, TP_2 <dbl+lbl>, …
(dataset.clean %>%
mutate(MindfulnessIV = case_when(FL_10_DO_NoMindfulnessMeditation_PhysiologicalArousal == 1 ~ "No Mindfulness",
FL_10_DO_NoMindfulnessMeditation_NoPhysiologicalArousal == 1 ~ "No Mindfulness",
FL_10_DO_MindfulnessMeditation_PhysiologicalArousal == 1 ~ "Mindfulness",
FL_10_DO_MindfulnessMeditation_NoPhysiologicalArousal == 1 ~ "Mindfulness")) -> dataset.clean)# A tibble: 119 × 45
StartDate EndDate Status IPAddress Progress
<dttm> <dttm> <dbl+lbl> <chr> <dbl>
1 2024-03-13 19:17:10 2024-03-13 19:21:25 0 [IP Address] 76.122.42.81 100
2 2024-03-13 19:34:32 2024-03-13 19:45:01 0 [IP Address] 73.6.5.118 100
3 2024-03-13 21:12:43 2024-03-13 21:26:04 0 [IP Address] 92.119.18.122 100
4 2024-03-14 09:56:42 2024-03-14 10:03:37 0 [IP Address] 139.62.222.1… 100
5 2024-03-15 01:31:54 2024-03-15 15:07:03 0 [IP Address] 107.115.224.… 100
6 2024-03-14 11:15:41 2024-03-14 11:24:47 0 [IP Address] 65.87.105.57 97
7 2024-03-14 13:06:19 2024-03-14 13:25:21 0 [IP Address] 166.205.159.… 97
8 2024-03-22 12:31:08 2024-03-22 12:40:46 0 [IP Address] 104.28.32.246 100
9 2024-03-25 17:07:22 2024-03-25 17:15:07 0 [IP Address] 139.62.222.2… 100
10 2024-03-25 17:53:57 2024-03-25 18:05:40 0 [IP Address] 172.59.67.194 100
# ℹ 109 more rows
# ℹ 40 more variables: Duration__in_seconds_ <dbl>, Finished <dbl+lbl>,
# RecordedDate <dttm>, ResponseId <chr>, RecipientLastName <chr>,
# RecipientFirstName <chr>, RecipientEmail <chr>, ExternalReference <chr>,
# LocationLatitude <chr>, LocationLongitude <chr>, DistributionChannel <chr>,
# UserLanguage <chr>, Informed_Consent <dbl+lbl>, TP_1 <dbl+lbl>,
# TP_3 <dbl+lbl>, TP_4 <dbl+lbl>, TP_5 <dbl+lbl>, TP_2 <dbl+lbl>, …
(dataset.clean %>%
mutate(PhysiologicalArousalIV = case_when(FL_10_DO_NoMindfulnessMeditation_PhysiologicalArousal == 1 ~ "Physiological Arousal",
FL_10_DO_NoMindfulnessMeditation_NoPhysiologicalArousal == 1 ~ "No Physiological Arousal",
FL_10_DO_MindfulnessMeditation_PhysiologicalArousal == 1 ~ "Physiological Arousal",
FL_10_DO_MindfulnessMeditation_NoPhysiologicalArousal == 1 ~ "No Physiological Arousal")) -> dataset.clean)# A tibble: 119 × 46
StartDate EndDate Status IPAddress Progress
<dttm> <dttm> <dbl+lbl> <chr> <dbl>
1 2024-03-13 19:17:10 2024-03-13 19:21:25 0 [IP Address] 76.122.42.81 100
2 2024-03-13 19:34:32 2024-03-13 19:45:01 0 [IP Address] 73.6.5.118 100
3 2024-03-13 21:12:43 2024-03-13 21:26:04 0 [IP Address] 92.119.18.122 100
4 2024-03-14 09:56:42 2024-03-14 10:03:37 0 [IP Address] 139.62.222.1… 100
5 2024-03-15 01:31:54 2024-03-15 15:07:03 0 [IP Address] 107.115.224.… 100
6 2024-03-14 11:15:41 2024-03-14 11:24:47 0 [IP Address] 65.87.105.57 97
7 2024-03-14 13:06:19 2024-03-14 13:25:21 0 [IP Address] 166.205.159.… 97
8 2024-03-22 12:31:08 2024-03-22 12:40:46 0 [IP Address] 104.28.32.246 100
9 2024-03-25 17:07:22 2024-03-25 17:15:07 0 [IP Address] 139.62.222.2… 100
10 2024-03-25 17:53:57 2024-03-25 18:05:40 0 [IP Address] 172.59.67.194 100
# ℹ 109 more rows
# ℹ 41 more variables: Duration__in_seconds_ <dbl>, Finished <dbl+lbl>,
# RecordedDate <dttm>, ResponseId <chr>, RecipientLastName <chr>,
# RecipientFirstName <chr>, RecipientEmail <chr>, ExternalReference <chr>,
# LocationLatitude <chr>, LocationLongitude <chr>, DistributionChannel <chr>,
# UserLanguage <chr>, Informed_Consent <dbl+lbl>, TP_1 <dbl+lbl>,
# TP_3 <dbl+lbl>, TP_4 <dbl+lbl>, TP_5 <dbl+lbl>, TP_2 <dbl+lbl>, …
(dataset.clean %>%
mutate(tp1 = case_when(TP_1 == 4 ~ 1,
TRUE ~ 0)) %>%
mutate(tp2 = case_when(TP_2 == 3 ~ 1,
TRUE ~ 0)) %>%
mutate(tp3 = case_when(TP_3 == 2 ~ 1,
TRUE ~ 0)) %>%
mutate(tp4 = case_when(TP_4 == 1 ~ 1,
TRUE ~ 0)) %>%
mutate(tp5 = case_when(TP_5 == 4 ~ 1,
TRUE ~ 0)) %>%
mutate(tp6 = case_when(TP_6 == 4 ~ 1,
TRUE ~ 0)) %>%
mutate(tp7 = case_when(TP_7 == 3 ~ 1,
TRUE ~ 0)) -> dataset.clean)# A tibble: 119 × 53
StartDate EndDate Status IPAddress Progress
<dttm> <dttm> <dbl+lbl> <chr> <dbl>
1 2024-03-13 19:17:10 2024-03-13 19:21:25 0 [IP Address] 76.122.42.81 100
2 2024-03-13 19:34:32 2024-03-13 19:45:01 0 [IP Address] 73.6.5.118 100
3 2024-03-13 21:12:43 2024-03-13 21:26:04 0 [IP Address] 92.119.18.122 100
4 2024-03-14 09:56:42 2024-03-14 10:03:37 0 [IP Address] 139.62.222.1… 100
5 2024-03-15 01:31:54 2024-03-15 15:07:03 0 [IP Address] 107.115.224.… 100
6 2024-03-14 11:15:41 2024-03-14 11:24:47 0 [IP Address] 65.87.105.57 97
7 2024-03-14 13:06:19 2024-03-14 13:25:21 0 [IP Address] 166.205.159.… 97
8 2024-03-22 12:31:08 2024-03-22 12:40:46 0 [IP Address] 104.28.32.246 100
9 2024-03-25 17:07:22 2024-03-25 17:15:07 0 [IP Address] 139.62.222.2… 100
10 2024-03-25 17:53:57 2024-03-25 18:05:40 0 [IP Address] 172.59.67.194 100
# ℹ 109 more rows
# ℹ 48 more variables: Duration__in_seconds_ <dbl>, Finished <dbl+lbl>,
# RecordedDate <dttm>, ResponseId <chr>, RecipientLastName <chr>,
# RecipientFirstName <chr>, RecipientEmail <chr>, ExternalReference <chr>,
# LocationLatitude <chr>, LocationLongitude <chr>, DistributionChannel <chr>,
# UserLanguage <chr>, Informed_Consent <dbl+lbl>, TP_1 <dbl+lbl>,
# TP_3 <dbl+lbl>, TP_4 <dbl+lbl>, TP_5 <dbl+lbl>, TP_2 <dbl+lbl>, …
(dataset.clean %>%
rowwise()%>%
mutate(TP_totalCorrect = sum(tp1, tp2, tp3, tp4, tp5, tp6, tp7)) -> dataset.clean)# A tibble: 119 × 54
# Rowwise:
StartDate EndDate Status IPAddress Progress
<dttm> <dttm> <dbl+lbl> <chr> <dbl>
1 2024-03-13 19:17:10 2024-03-13 19:21:25 0 [IP Address] 76.122.42.81 100
2 2024-03-13 19:34:32 2024-03-13 19:45:01 0 [IP Address] 73.6.5.118 100
3 2024-03-13 21:12:43 2024-03-13 21:26:04 0 [IP Address] 92.119.18.122 100
4 2024-03-14 09:56:42 2024-03-14 10:03:37 0 [IP Address] 139.62.222.1… 100
5 2024-03-15 01:31:54 2024-03-15 15:07:03 0 [IP Address] 107.115.224.… 100
6 2024-03-14 11:15:41 2024-03-14 11:24:47 0 [IP Address] 65.87.105.57 97
7 2024-03-14 13:06:19 2024-03-14 13:25:21 0 [IP Address] 166.205.159.… 97
8 2024-03-22 12:31:08 2024-03-22 12:40:46 0 [IP Address] 104.28.32.246 100
9 2024-03-25 17:07:22 2024-03-25 17:15:07 0 [IP Address] 139.62.222.2… 100
10 2024-03-25 17:53:57 2024-03-25 18:05:40 0 [IP Address] 172.59.67.194 100
# ℹ 109 more rows
# ℹ 49 more variables: Duration__in_seconds_ <dbl>, Finished <dbl+lbl>,
# RecordedDate <dttm>, ResponseId <chr>, RecipientLastName <chr>,
# RecipientFirstName <chr>, RecipientEmail <chr>, ExternalReference <chr>,
# LocationLatitude <chr>, LocationLongitude <chr>, DistributionChannel <chr>,
# UserLanguage <chr>, Informed_Consent <dbl+lbl>, TP_1 <dbl+lbl>,
# TP_3 <dbl+lbl>, TP_4 <dbl+lbl>, TP_5 <dbl+lbl>, TP_2 <dbl+lbl>, …
aov_ez(id = "ResponseId",
dv = "TP_totalCorrect",
data = dataset.clean,
between=c("PhysiologicalArousalIV", "MindfulnessIV"),
anova_table = list(es = "pes"))Converting to factor: PhysiologicalArousalIV, MindfulnessIV
Contrasts set to contr.sum for the following variables: PhysiologicalArousalIV, MindfulnessIV
Anova Table (Type 3 tests)
Response: TP_totalCorrect
Effect df MSE F pes p.value
1 PhysiologicalArousalIV 1, 115 1.97 3.48 + .029 .065
2 MindfulnessIV 1, 115 1.97 0.38 .003 .540
3 PhysiologicalArousalIV:MindfulnessIV 1, 115 1.97 0.48 .004 .490
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '+' 0.1 ' ' 1