library(readr)library(dplyr)library(ggplot2)library(tidyverse)library(janitor)library(tidyr)imf_climate_dashboards_green_debt_url <-"https://opendata.arcgis.com/datasets/8e2772e0b65f4e33a80183ce9583d062_0.csv"green_bond <- imf_climate_dashboards_green_debt_url |>read_csv() indicators_we_want <-c("Green Bond Issuances by Country", "Sovereign Green Bond Issuances")india_green_bonds <- green_bond %>%filter(Country =="India")india_green_bonds
Rows: 424 Columns: 18
── Column specification ────────────────────────────────────────────────────────
Delimiter: ","
chr (10): ticker, name, asset_class, sub_asset_class, region, market, locat...
dbl (6): gross_expense_ratio_percent, net_expense_ratio_percent, net_asset...
dttm (2): incept_date, net_assets_as_of
ℹ Use `spec()` to retrieve the full column specification for this data.
ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
india_etf$incept_date <-as.Date(india_etf$incept_date)ggplot(data = india_etf, aes(x = incept_date, y = net_assets_usd)) +geom_line() +labs(x ="Inception Date", y ="Net Assets (USD)") +ggtitle("Net Assets over Time")
ggplot(data = india_etf, aes(x = incept_date, y = gross_expense_ratio_percent)) +geom_line() +labs(x ="Inception Date", y ="Gross Expense Ratio (%)") +ggtitle("Gross Expense Ratio over Time")
ggplot(india_etf, aes(x = msci_esg_quality_score_0_10, y = net_assets_usd, fill = msci_esg_quality_score_0_10)) +geom_bar(stat ="identity") +labs(x ="MSCI ESG Quality Score (0-10)", y ="Net Assets (USD)", fill ="MSCI ESG Quality Score") +ggtitle("Comparison of MSCI ESG Quality Score with Net Assets")