Set up

library(tidyverse)
## ── Attaching core tidyverse packages ──────────────────────── tidyverse 2.0.0 ──
## ✔ dplyr     1.1.4     ✔ readr     2.1.4
## ✔ forcats   1.0.0     ✔ stringr   1.5.0
## ✔ ggplot2   3.4.4     ✔ tibble    3.2.1
## ✔ lubridate 1.9.2     ✔ tidyr     1.3.0
## ✔ purrr     1.0.2     
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## ✖ dplyr::filter() masks stats::filter()
## ✖ dplyr::lag()    masks stats::lag()
## ℹ Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors
library(broom) # tidy model results 
library(umap) # dimension reduction 
library(plotly) # interactive visualization
## 
## Attaching package: 'plotly'
## 
## The following object is masked from 'package:ggplot2':
## 
##     last_plot
## 
## The following object is masked from 'package:stats':
## 
##     filter
## 
## The following object is masked from 'package:graphics':
## 
##     layout
employed <- read_csv("https://raw.githubusercontent.com/rfordatascience/tidytuesday/master/data/2021/2021-02-23/employed.csv")
## Rows: 8184 Columns: 7
## ── Column specification ────────────────────────────────────────────────────────
## Delimiter: ","
## chr (4): industry, major_occupation, minor_occupation, race_gender
## dbl (3): industry_total, employ_n, year
## 
## ℹ Use `spec()` to retrieve the full column specification for this data.
## ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.

Convert Data to Standerize Form

employed_grouped <- employed %>%
  filter(!is.na(employ_n)) %>%
  group_by(occupation = paste(industry, minor_occupation), race_gender) %>%
  summarise(n = sum(employ_n)) %>%
  ungroup()
## `summarise()` has grouped output by 'occupation'. You can override using the
## `.groups` argument.
employed_tidy <- employed_grouped %>%
  
  # Remove total category
  filter(race_gender != "TOTAL") %>%
  
  # Add total column 
  left_join(employed_grouped %>%
              filter(race_gender == "TOTAL") %>%
              select(occupation, total = n)) %>%
  
  # Get pct in total
  mutate(pct= n / total) %>% 
  
  # Remove outliers
  filter(total > 1000) %>%
  select(-n)
## Joining with `by = join_by(occupation)`
employed_tidy
## # A tibble: 1,160 × 4
##    occupation                                          race_gender  total    pct
##    <chr>                                               <chr>        <dbl>  <dbl>
##  1 Agriculture and related Construction and extractio… Asian       7.3 e4 0.0274
##  2 Agriculture and related Construction and extractio… Black or A… 7.3 e4 0.0822
##  3 Agriculture and related Construction and extractio… Men         7.3 e4 0.973 
##  4 Agriculture and related Construction and extractio… White       7.3 e4 0.863 
##  5 Agriculture and related Construction and extractio… Women       7.3 e4 0.0274
##  6 Agriculture and related Farming, fishing, and fore… Asian       5.74e6 0.0139
##  7 Agriculture and related Farming, fishing, and fore… Black or A… 5.74e6 0.0342
##  8 Agriculture and related Farming, fishing, and fore… Men         5.74e6 0.789 
##  9 Agriculture and related Farming, fishing, and fore… White       5.74e6 0.911 
## 10 Agriculture and related Farming, fishing, and fore… Women       5.74e6 0.211 
## # ℹ 1,150 more rows
employed_standard <- employed_tidy %>%
  
  # Standardize
  group_by(race_gender) %>%
  mutate(pct = pct %>% scale() %>% as.numeric()) %>%
  ungroup() %>%
  mutate(total = total %>% log() %>% scale() %>% as.numeric()) 

employed_standard
## # A tibble: 1,160 × 4
##    occupation                                          race_gender  total    pct
##    <chr>                                               <chr>        <dbl>  <dbl>
##  1 Agriculture and related Construction and extractio… Asian       -1.30  -0.539
##  2 Agriculture and related Construction and extractio… Black or A… -1.30  -0.405
##  3 Agriculture and related Construction and extractio… Men         -1.30   1.31 
##  4 Agriculture and related Construction and extractio… White       -1.30   0.725
##  5 Agriculture and related Construction and extractio… Women       -1.30  -1.30 
##  6 Agriculture and related Farming, fishing, and fore… Asian        0.819 -0.928
##  7 Agriculture and related Farming, fishing, and fore… Black or A…  0.819 -1.21 
##  8 Agriculture and related Farming, fishing, and fore… Men          0.819  0.510
##  9 Agriculture and related Farming, fishing, and fore… White        0.819  1.38 
## 10 Agriculture and related Farming, fishing, and fore… Women        0.819 -0.503
## # ℹ 1,150 more rows

2 Spread to object-characteristics format

occupation_demo_tb1 <- employed_tidy %>%
  pivot_wider(names_from = race_gender, values_from = pct) %>%
  janitor::clean_names()

occupation_demo_tb1
## # A tibble: 232 × 7
##    occupation            total   asian black_or_african_ame…¹   men white  women
##    <chr>                 <dbl>   <dbl>                  <dbl> <dbl> <dbl>  <dbl>
##  1 Agriculture and rel… 7.3 e4 0.0274                 0.0822  0.973 0.863 0.0274
##  2 Agriculture and rel… 5.74e6 0.0139                 0.0342  0.789 0.911 0.211 
##  3 Agriculture and rel… 1.94e5 0.0155                 0.0309  0.985 0.918 0.0103
##  4 Agriculture and rel… 1.01e6 0.00992                0.00794 0.739 0.967 0.261 
##  5 Agriculture and rel… 5.22e6 0.00997                0.00882 0.741 0.962 0.259 
##  6 Agriculture and rel… 5.15e5 0.0233                 0.0155  0.159 0.938 0.841 
##  7 Agriculture and rel… 2.11e5 0.0332                 0.104   0.815 0.820 0.185 
##  8 Agriculture and rel… 2.95e5 0.0339                 0.0373  0.675 0.902 0.329 
##  9 Agriculture and rel… 8.80e4 0                      0.0682  0.864 0.875 0.136 
## 10 Agriculture and rel… 9.40e4 0                      0.0213  0.585 0.968 0.426 
## # ℹ 222 more rows
## # ℹ abbreviated name: ¹​black_or_african_american

3 Perfrom k-means clustering

occupation_cluster <- kmeans(occupation_demo_tb1 %>% select(-occupation), centers = 3, nstart = 20)
summary(occupation_cluster)
##              Length Class  Mode   
## cluster      232    -none- numeric
## centers       18    -none- numeric
## totss          1    -none- numeric
## withinss       3    -none- numeric
## tot.withinss   1    -none- numeric
## betweenss      1    -none- numeric
## size           3    -none- numeric
## iter           1    -none- numeric
## ifault         1    -none- numeric
tidy(occupation_cluster)
## # A tibble: 3 × 9
##     total  asian black_or_african_ame…¹   men white women  size withinss cluster
##     <dbl>  <dbl>                  <dbl> <dbl> <dbl> <dbl> <int>    <dbl> <fct>  
## 1  1.80e6 0.0424                  0.104 0.693 0.816 0.305   198  8.13e14 1      
## 2  1.47e7 0.0684                  0.120 0.554 0.779 0.446    26  5.46e14 2      
## 3  5.41e7 0.0654                  0.124 0.533 0.774 0.467     8  4.86e15 3      
## # ℹ abbreviated name: ¹​black_or_african_american
glance(occupation_cluster)
## # A tibble: 1 × 4
##     totss tot.withinss betweenss  iter
##     <dbl>        <dbl>     <dbl> <int>
## 1 3.00e16      6.22e15   2.37e16     3
augment(occupation_cluster, occupation_demo_tb1) %>%
  
  ggplot(aes(total, asian, color = .cluster)) +
  geom_point()

4 Select optimal number of clusters

kclusts <- tibble(k = 1:9) %>%
  mutate(kclust = map(.x = k, .f = ~ kmeans(occupation_demo_tb1 %>% select(-occupation), centers = .x, nstart = 20)),
         glanced = map(.x = kclust, .f = glance))

kclusts %>%
  unnest(glanced) %>%
  ggplot(aes(k, tot.withinss)) +
  geom_point() +
  geom_line()

final_cluster <- kmeans(occupation_demo_tb1 %>% select(-occupation), centers = 5, nstart = 20)
augment(final_cluster, occupation_demo_tb1) %>%
  
  ggplot(aes(total, asian, color = .cluster)) +
  geom_point()

5 Reduce dimension using UMAP

umap_results <- occupation_demo_tb1 %>% 
  select(-occupation) %>%
  umap()

umap_results_tb1 <- umap_results$layout %>%
  as.tibble() %>%
  bind_cols(occupation_demo_tb1 %>% select(occupation))
## Warning: `as.tibble()` was deprecated in tibble 2.0.0.
## ℹ Please use `as_tibble()` instead.
## ℹ The signature and semantics have changed, see `?as_tibble`.
## This warning is displayed once every 8 hours.
## Call `lifecycle::last_lifecycle_warnings()` to see where this warning was
## generated.
## Warning: The `x` argument of `as_tibble.matrix()` must have unique column names if
## `.name_repair` is omitted as of tibble 2.0.0.
## ℹ Using compatibility `.name_repair`.
## ℹ The deprecated feature was likely used in the tibble package.
##   Please report the issue at <https://github.com/tidyverse/tibble/issues>.
## This warning is displayed once every 8 hours.
## Call `lifecycle::last_lifecycle_warnings()` to see where this warning was
## generated.
umap_results_tb1
## # A tibble: 232 × 3
##         V1     V2 occupation                                                    
##      <dbl>  <dbl> <chr>                                                         
##  1 -3.53   -8.73  Agriculture and related Construction and extraction occupatio…
##  2 -3.30    8.36  Agriculture and related Farming, fishing, and forestry occupa…
##  3  0.0535 -7.31  Agriculture and related Installation, maintenance, and repair…
##  4  7.61   -0.423 Agriculture and related Manage-ment, business, and financial …
##  5 -2.43    8.29  Agriculture and related Management, business, and financial o…
##  6  3.98   -5.73  Agriculture and related Office and administrative support occ…
##  7  0.243  -7.17  Agriculture and related Production occupations                
##  8  1.73   -6.64  Agriculture and related Professional and related occupations  
##  9 -3.40   -9.02  Agriculture and related Protective service occupations        
## 10 -3.44   -9.02  Agriculture and related Sales and related occupations         
## # ℹ 222 more rows
umap_results_tb1 %>% 
  ggplot(aes(V1, V2)) +
  geom_point()

Visualize cluster by adding k-means results

kmeans_umap_tb1 <- final_cluster %>%
  augment(occupation_demo_tb1) %>%
  select(occupation, .cluster) %>%
  
  # Add umap results
  left_join(umap_results_tb1) %>%
  
  # Add employment info 
  left_join(employed_tidy %>%
              select(-total) %>%
              pivot_wider(names_from = race_gender, values_from = pct) %>%
              janitor::clean_names())
## Joining with `by = join_by(occupation)`
## Joining with `by = join_by(occupation)`
kmeans_umap_tb1
## # A tibble: 232 × 9
##    occupation .cluster      V1     V2   asian black_or_african_ame…¹   men white
##    <chr>      <fct>      <dbl>  <dbl>   <dbl>                  <dbl> <dbl> <dbl>
##  1 Agricultu… 2        -3.53   -8.73  0.0274                 0.0822  0.973 0.863
##  2 Agricultu… 4        -3.30    8.36  0.0139                 0.0342  0.789 0.911
##  3 Agricultu… 2         0.0535 -7.31  0.0155                 0.0309  0.985 0.918
##  4 Agricultu… 2         7.61   -0.423 0.00992                0.00794 0.739 0.967
##  5 Agricultu… 4        -2.43    8.29  0.00997                0.00882 0.741 0.962
##  6 Agricultu… 2         3.98   -5.73  0.0233                 0.0155  0.159 0.938
##  7 Agricultu… 2         0.243  -7.17  0.0332                 0.104   0.815 0.820
##  8 Agricultu… 2         1.73   -6.64  0.0339                 0.0373  0.675 0.902
##  9 Agricultu… 2        -3.40   -9.02  0                      0.0682  0.864 0.875
## 10 Agricultu… 2        -3.44   -9.02  0                      0.0213  0.585 0.968
## # ℹ 222 more rows
## # ℹ abbreviated name: ¹​black_or_african_american
## # ℹ 1 more variable: women <dbl>
g <- kmeans_umap_tb1 %>%
  
  # create text label 
  mutate(text_label = str_glue("Occupation: {occupation}
                               Cluster: {.cluster}
                               Asian: {asian %>% scales::percent(1)}
                               Women: {women %>% scales::percent(1)}")) %>%
  
  #plot
  
  ggplot(aes(V1, V2, color = .cluster, text = text_label)) +
  geom_point()

g %>% ggplotly(tooltrip = "text")