We used the mtcars dataset to predict miles per gallon (mpg). The dependant variable.

Building the Model with Specified Terms:

   data(mtcars)

   # Create a quadratic term for hp
   mtcars$hp2 <- mtcars$hp^2
   
   model <- lm(mpg ~ hp + wt + am + hp2 + am:wt, data=mtcars)
   
   summary(model)
## 
## Call:
## lm(formula = mpg ~ hp + wt + am + hp2 + am:wt, data = mtcars)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -2.6762 -1.5665 -0.1225  1.2939  4.1822 
## 
## Coefficients:
##               Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  3.593e+01  2.962e+00  12.130  3.3e-12 ***
## hp          -1.113e-01  3.038e-02  -3.665  0.00111 ** 
## wt          -1.999e+00  7.691e-01  -2.598  0.01522 *  
## am           1.203e+01  3.568e+00   3.372  0.00235 ** 
## hp2          2.320e-04  8.003e-05   2.899  0.00752 ** 
## wt:am       -4.093e+00  1.290e+00  -3.172  0.00386 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 2.066 on 26 degrees of freedom
## Multiple R-squared:  0.9014, Adjusted R-squared:  0.8825 
## F-statistic: 47.56 on 5 and 26 DF,  p-value: 2.9e-12

Interpretation of Coefficients:

Residual Analysis:

   par(mfrow = c(2, 2))
   plot(model)

Model Appropriateness:
The model seems to fit the data well, with a high R-squared of 0.9014, indicating a strong explanatory power. However, the residual plots suggest there may be some violations of homoscedasticity and linearity. Thus, while the model is generally appropriate, these issues may need to be addressed, possibly by transforming variables or considering a different model form.