#Transform data: Calculate average tv hours by religion
tvhours_by_relig <- gss_cat %>%
group_by(relig) %>%
summarise(
avg_tvhours = mean(tvhours, na.rm = TRUE)
)
tvhours_by_relig
## # A tibble: 15 × 2
## relig avg_tvhours
## <fct> <dbl>
## 1 No answer 2.72
## 2 Don't know 4.62
## 3 Inter-nondenominational 2.87
## 4 Native american 3.46
## 5 Christian 2.79
## 6 Orthodox-christian 2.42
## 7 Moslem/islam 2.44
## 8 Other eastern 1.67
## 9 Hinduism 1.89
## 10 Buddhism 2.38
## 11 Other 2.73
## 12 None 2.71
## 13 Jewish 2.52
## 14 Catholic 2.96
## 15 Protestant 3.15
#Plot
tvhours_by_relig %>%
ggplot(aes(x = avg_tvhours, y = relig)) +
geom_point()
tvhours_by_relig %>%
ggplot(aes(x = avg_tvhours, y = fct_reorder(.f = relig, .x = avg_tvhours))) +
geom_point() +
#Labaling
labs(y = NULL, x = "Mean daily hours watching tv")
tvhours_by_relig %>%
ggplot(aes(x = avg_tvhours,
y = fct_reorder(.f = relig, .x = avg_tvhours) %>%
fct_relevel("Don't know"))) +
geom_point() +
#Labaling
labs(y = NULL, x = "Mean daily hours watching tv")
gss_cat %>% distinct(race)
## # A tibble: 3 × 1
## race
## <fct>
## 1 White
## 2 Black
## 3 Other
# Recode
gss_cat %>%
# Rename levels
mutate(race_rev = fct_recode(race, "African American" = "Black")) %>%
select(race, race_rev) %>%
filter(race == "Black")
## # A tibble: 3,129 × 2
## race race_rev
## <fct> <fct>
## 1 Black African American
## 2 Black African American
## 3 Black African American
## 4 Black African American
## 5 Black African American
## 6 Black African American
## 7 Black African American
## 8 Black African American
## 9 Black African American
## 10 Black African American
## # ℹ 3,119 more rows
# Colapse multiple levels into one
gss_cat %>%
mutate(race_col = fct_collapse(race, "Minority" = c("Black","Other"))) %>%
select(race, race_col) %>%
filter(race !="White")
## # A tibble: 5,088 × 2
## race race_col
## <fct> <fct>
## 1 Black Minority
## 2 Black Minority
## 3 Black Minority
## 4 Other Minority
## 5 Black Minority
## 6 Other Minority
## 7 Black Minority
## 8 Other Minority
## 9 Black Minority
## 10 Black Minority
## # ℹ 5,078 more rows
# Lump small levels into other levels
gss_cat %>% count(race)
## # A tibble: 3 × 2
## race n
## <fct> <int>
## 1 Other 1959
## 2 Black 3129
## 3 White 16395
gss_cat %>% mutate(race_lump = fct_lump(race)) %>% distinct(race_lump)
## # A tibble: 2 × 1
## race_lump
## <fct>
## 1 White
## 2 Other
# From strings
"2024-04-08" %>% ymd()
## [1] "2024-04-08"
"2024-04-08 9-01-25" %>% ymd_hms()
## [1] "2024-04-08 09:01:25 UTC"
# From numbers
20240408 %>% ymd()
## [1] "2024-04-08"
flights %>%
select(year:day, hour, minute) %>%
mutate(depature = make_datetime(year = year, month = month, day = day, hour = hour, min = minute))
## # A tibble: 336,776 × 6
## year month day hour minute depature
## <int> <int> <int> <dbl> <dbl> <dttm>
## 1 2013 1 1 5 15 2013-01-01 05:15:00
## 2 2013 1 1 5 29 2013-01-01 05:29:00
## 3 2013 1 1 5 40 2013-01-01 05:40:00
## 4 2013 1 1 5 45 2013-01-01 05:45:00
## 5 2013 1 1 6 0 2013-01-01 06:00:00
## 6 2013 1 1 5 58 2013-01-01 05:58:00
## 7 2013 1 1 6 0 2013-01-01 06:00:00
## 8 2013 1 1 6 0 2013-01-01 06:00:00
## 9 2013 1 1 6 0 2013-01-01 06:00:00
## 10 2013 1 1 6 0 2013-01-01 06:00:00
## # ℹ 336,766 more rows
# From date to date-time
today() %>% as_datetime()
## [1] "2024-04-09 UTC"
# From date-time to date
now() %>% as_datetime()
## [1] "2024-04-09 21:11:43 EDT"
date_time <- ymd_hms("2024-04-09 2.44.45")
date_time
## [1] "2024-04-09 02:44:45 UTC"
year(date_time)
## [1] 2024
month(date_time, label = TRUE, abbr = FALSE)
## [1] April
## 12 Levels: January < February < March < April < May < June < ... < December
yday(date_time)
## [1] 100
mday(date_time)
## [1] 9
wday(date_time, label = TRUE, abbr = FALSE)
## [1] Tuesday
## 7 Levels: Sunday < Monday < Tuesday < Wednesday < Thursday < ... < Saturday
make_datetime_100 <- function(year, month, day, time) {
make_datetime(year, month, day, time %/% 100, time %% 100)
}
flights_dt <- flights %>%
filter(!is.na(dep_time), !is.na(arr_time)) %>%
mutate(
dep_time = make_datetime_100(year, month, day, dep_time),
arr_time = make_datetime_100(year, month, day, arr_time),
sched_dep_time = make_datetime_100(year, month, day, sched_dep_time),
sched_arr_time = make_datetime_100(year, month, day, sched_arr_time)
) %>%
select(origin, dest, ends_with("delay"), ends_with("time"))
flights_dt %>%
transmute(wday = wday(dep_time, label = TRUE)) %>%
ggplot(aes(wday)) +
geom_bar()
# Gjort själv (inte i video)
flights_dt %>%
mutate(minute = minute(dep_time)) %>%
group_by(minute) %>%
summarise(
avg_delay = mean(arr_delay, na.rm = TRUE),
n = n()) %>%
ggplot(aes(minute, avg_delay)) +
geom_line()
# Floor_date rounding down
flights_dt %>%
mutate(week = floor_date(dep_time, "month")) %>%
select(dep_time, week) %>%
sample_n(10)
## # A tibble: 10 × 2
## dep_time week
## <dttm> <dttm>
## 1 2013-03-11 12:52:00 2013-03-01 00:00:00
## 2 2013-12-08 09:47:00 2013-12-01 00:00:00
## 3 2013-11-29 21:16:00 2013-11-01 00:00:00
## 4 2013-04-15 11:02:00 2013-04-01 00:00:00
## 5 2013-11-06 09:57:00 2013-11-01 00:00:00
## 6 2013-04-29 11:06:00 2013-04-01 00:00:00
## 7 2013-06-26 19:17:00 2013-06-01 00:00:00
## 8 2013-03-24 21:26:00 2013-03-01 00:00:00
## 9 2013-06-07 16:55:00 2013-06-01 00:00:00
## 10 2013-10-04 20:18:00 2013-10-01 00:00:00
# Ceiling_date rounding up
flights_dt %>%
mutate(week = ceiling_date(dep_time, "month")) %>%
select(dep_time, week) %>%
sample_n(10)
## # A tibble: 10 × 2
## dep_time week
## <dttm> <dttm>
## 1 2013-02-27 17:03:00 2013-03-01 00:00:00
## 2 2013-11-08 10:17:00 2013-12-01 00:00:00
## 3 2013-10-03 13:57:00 2013-11-01 00:00:00
## 4 2013-09-29 20:51:00 2013-10-01 00:00:00
## 5 2013-07-25 17:45:00 2013-08-01 00:00:00
## 6 2013-03-21 20:14:00 2013-04-01 00:00:00
## 7 2013-01-27 12:36:00 2013-02-01 00:00:00
## 8 2013-08-14 17:53:00 2013-09-01 00:00:00
## 9 2013-06-25 08:05:00 2013-07-01 00:00:00
## 10 2013-11-24 14:52:00 2013-12-01 00:00:00
flights_dt %>%
mutate(dep_hour = update(dep_time, yday = 1)) %>%
select(dep_time, dep_hour) %>%
ggplot(aes(dep_hour)) +
geom_freqpoly(binwidth = 300)