# Load package
library(tidyverse)
## ── Attaching core tidyverse packages ──────────────────────── tidyverse 2.0.0 ──
## ✔ dplyr 1.1.4 ✔ readr 2.1.5
## ✔ forcats 1.0.0 ✔ stringr 1.5.1
## ✔ ggplot2 3.4.4 ✔ tibble 3.2.1
## ✔ lubridate 1.9.3 ✔ tidyr 1.3.1
## ✔ purrr 1.0.2
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## ✖ dplyr::filter() masks stats::filter()
## ✖ dplyr::lag() masks stats::lag()
## ℹ Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors
library(lubridate)
library(nycflights13)
month_levels <- c(
"Jan", "Feb", "Mar", "Apr", "May", "Jun",
"Jul", "Aug", "Sep", "Oct", "Nov", "Dec"
)
x1 <- c("Dec", "Apr", "Jan", "Mar")
y1 <- factor(x1, levels = month_levels)
sort(y1)
## [1] Jan Mar Apr Dec
## Levels: Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
Unordered factor levels
# Transform data: calculate average tv hours by religion
tvhours_by_religion <- gss_cat %>%
group_by(relig) %>%
summarise(
avg_tvhours = mean(tvhours, na.rm = TRUE)
)
tvhours_by_religion
## # A tibble: 15 × 2
## relig avg_tvhours
## <fct> <dbl>
## 1 No answer 2.72
## 2 Don't know 4.62
## 3 Inter-nondenominational 2.87
## 4 Native american 3.46
## 5 Christian 2.79
## 6 Orthodox-christian 2.42
## 7 Moslem/islam 2.44
## 8 Other eastern 1.67
## 9 Hinduism 1.89
## 10 Buddhism 2.38
## 11 Other 2.73
## 12 None 2.71
## 13 Jewish 2.52
## 14 Catholic 2.96
## 15 Protestant 3.15
# Plot
tvhours_by_religion %>%
ggplot(aes(x = avg_tvhours, y = relig)) +
geom_point()
Ordered factor levels
tvhours_by_religion %>%
ggplot(aes(x = avg_tvhours, y = fct_reorder(.f = relig, .x = avg_tvhours))) +
geom_point() +
# labeling
labs(y = NULL, x = "Mean Daily Hours Watching TV")
moving a single level to the front
tvhours_by_religion %>%
ggplot(aes(x = avg_tvhours, y = fct_reorder(.f = relig, .x = avg_tvhours) %>%
fct_relevel("Don't know")))+
geom_point() +
# labeling
labs(y = NULL, x = "Mean Daily Hours Watching TV")
gss_cat %>% distinct(race)
## # A tibble: 3 × 1
## race
## <fct>
## 1 White
## 2 Black
## 3 Other
# Recode
gss_cat %>%
# rename levels
mutate(race_rev = fct_recode(race, "African American" = "Black")) %>%
select(race, race_rev) %>%
filter(race == "Black")
## # A tibble: 3,129 × 2
## race race_rev
## <fct> <fct>
## 1 Black African American
## 2 Black African American
## 3 Black African American
## 4 Black African American
## 5 Black African American
## 6 Black African American
## 7 Black African American
## 8 Black African American
## 9 Black African American
## 10 Black African American
## # ℹ 3,119 more rows
# Collapse multiple levels into one
gss_cat %>%
mutate(race_col = fct_collapse(race, "Minority" = c("Black", "Other"))) %>%
select(race, race_col) %>%
filter(race != "White")
## # A tibble: 5,088 × 2
## race race_col
## <fct> <fct>
## 1 Black Minority
## 2 Black Minority
## 3 Black Minority
## 4 Other Minority
## 5 Black Minority
## 6 Other Minority
## 7 Black Minority
## 8 Other Minority
## 9 Black Minority
## 10 Black Minority
## # ℹ 5,078 more rows
# Lump small levels into other levels
gss_cat %>% mutate(race_lump = fct_lump(race)) %>% distinct(race_lump)
## # A tibble: 2 × 1
## race_lump
## <fct>
## 1 White
## 2 Other
# From strings
"2024-04-09" %>% ymd()
## [1] "2024-04-09"
# From numbers
20240409 %>% ymd()
## [1] "2024-04-09"
"2024-04-09 7-46-38" %>% ymd_hms()
## [1] "2024-04-09 07:46:38 UTC"
flights %>%
select(year:day, hour, minute) %>%
mutate(departure = make_datetime(year = year, month = month, day = day, hour = hour, min = minute))
## # A tibble: 336,776 × 6
## year month day hour minute departure
## <int> <int> <int> <dbl> <dbl> <dttm>
## 1 2013 1 1 5 15 2013-01-01 05:15:00
## 2 2013 1 1 5 29 2013-01-01 05:29:00
## 3 2013 1 1 5 40 2013-01-01 05:40:00
## 4 2013 1 1 5 45 2013-01-01 05:45:00
## 5 2013 1 1 6 0 2013-01-01 06:00:00
## 6 2013 1 1 5 58 2013-01-01 05:58:00
## 7 2013 1 1 6 0 2013-01-01 06:00:00
## 8 2013 1 1 6 0 2013-01-01 06:00:00
## 9 2013 1 1 6 0 2013-01-01 06:00:00
## 10 2013 1 1 6 0 2013-01-01 06:00:00
## # ℹ 336,766 more rows
# From date to date-time
today() %>% as_datetime()
## [1] "2024-04-09 UTC"
# From date-time to date
now() %>% as_datetime()
## [1] "2024-04-09 20:43:04 EDT"
date_time <- ymd_hms("2024-04-09 7-46-38")
year(date_time)
## [1] 2024
month(date_time)
## [1] 4
yday(date_time)
## [1] 100
mday(date_time)
## [1] 9
wday(date_time, label = TRUE, abbr = FALSE)
## [1] Tuesday
## 7 Levels: Sunday < Monday < Tuesday < Wednesday < Thursday < ... < Saturday
# Create flights_dt
make_datetime_100 <- function(year, month, day, time) {
make_datetime(year, month, day, time %/% 100, time %% 100)
}
flights_dt <- flights %>%
filter(!is.na(dep_time), !is.na(arr_time)) %>%
mutate(
dep_time = make_datetime_100(year, month, day, dep_time),
arr_time = make_datetime_100(year, month, day, arr_time),
sched_dep_time = make_datetime_100(year, month, day, sched_dep_time),
sched_arr_time = make_datetime_100(year, month, day, sched_arr_time)
) %>%
select(origin, dest, ends_with("delay"), ends_with("time"))
flights_dt %>%
transmute(wday = wday(dep_time, label = TRUE)) %>%
ggplot(aes(wday)) +
geom_bar()
# floor_date for rounding down
flights_dt %>%
mutate(week = floor_date(dep_time, "month")) %>%
select(dep_time, week) %>%
slice(2000:2010) %>%
sample_n(10)
## # A tibble: 10 × 2
## dep_time week
## <dttm> <dttm>
## 1 2013-01-03 09:14:00 2013-01-01 00:00:00
## 2 2013-01-03 09:16:00 2013-01-01 00:00:00
## 3 2013-01-03 09:17:00 2013-01-01 00:00:00
## 4 2013-01-03 09:23:00 2013-01-01 00:00:00
## 5 2013-01-03 09:23:00 2013-01-01 00:00:00
## 6 2013-01-03 09:12:00 2013-01-01 00:00:00
## 7 2013-01-03 09:12:00 2013-01-01 00:00:00
## 8 2013-01-03 09:11:00 2013-01-01 00:00:00
## 9 2013-01-03 09:14:00 2013-01-01 00:00:00
## 10 2013-01-03 09:23:00 2013-01-01 00:00:00
# ceiling_date for rounding up
flights_dt %>%
mutate(week = floor_date(dep_time, "month")) %>%
select(dep_time, week) %>%
slice(2000:2010) %>%
sample_n(10)
## # A tibble: 10 × 2
## dep_time week
## <dttm> <dttm>
## 1 2013-01-03 09:13:00 2013-01-01 00:00:00
## 2 2013-01-03 09:12:00 2013-01-01 00:00:00
## 3 2013-01-03 09:23:00 2013-01-01 00:00:00
## 4 2013-01-03 09:14:00 2013-01-01 00:00:00
## 5 2013-01-03 09:11:00 2013-01-01 00:00:00
## 6 2013-01-03 09:16:00 2013-01-01 00:00:00
## 7 2013-01-03 09:12:00 2013-01-01 00:00:00
## 8 2013-01-03 09:23:00 2013-01-01 00:00:00
## 9 2013-01-03 09:23:00 2013-01-01 00:00:00
## 10 2013-01-03 09:14:00 2013-01-01 00:00:00
flights_dt %>%
mutate(dep_hour = update(dep_time, yday = 1)) %>%
select(dep_time, dep_hour) %>%
sample_n(10)
## # A tibble: 10 × 2
## dep_time dep_hour
## <dttm> <dttm>
## 1 2013-06-22 21:36:00 2013-01-01 21:36:00
## 2 2013-06-08 08:12:00 2013-01-01 08:12:00
## 3 2013-06-10 13:28:00 2013-01-01 13:28:00
## 4 2013-12-19 11:58:00 2013-01-01 11:58:00
## 5 2013-07-03 09:13:00 2013-01-01 09:13:00
## 6 2013-10-21 14:10:00 2013-01-01 14:10:00
## 7 2013-04-20 13:54:00 2013-01-01 13:54:00
## 8 2013-05-11 18:15:00 2013-01-01 18:15:00
## 9 2013-02-02 13:28:00 2013-01-01 13:28:00
## 10 2013-07-08 18:26:00 2013-01-01 18:26:00