x1 <- c("Dec", "Apr", "Jan", "Mar")
x2 <- c("Dec", "Apr", "Jan", "Mar")
sort(x1)
## [1] "Apr" "Dec" "Jan" "Mar"
#> [1] "Apr" "Dec" "Jan" "Mar"
month_levels <- c(
"Jan", "Feb", "Mar", "Apr", "May", "Jun",
"Jul", "Aug", "Sep", "Oct", "Nov", "Dec"
)
y1 <- factor(x1, levels = month_levels)
y1
## [1] Dec Apr Jan Mar
## Levels: Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
#> [1] Dec Apr Jan Mar
#> Levels: Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
sort(y1)
## [1] Jan Mar Apr Dec
## Levels: Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
#> [1] Jan Mar Apr Dec
#> Levels: Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
gss_cat
## # A tibble: 21,483 × 9
## year marital age race rincome partyid relig denom tvhours
## <int> <fct> <int> <fct> <fct> <fct> <fct> <fct> <int>
## 1 2000 Never married 26 White $8000 to 9999 Ind,near … Prot… Sout… 12
## 2 2000 Divorced 48 White $8000 to 9999 Not str r… Prot… Bapt… NA
## 3 2000 Widowed 67 White Not applicable Independe… Prot… No d… 2
## 4 2000 Never married 39 White Not applicable Ind,near … Orth… Not … 4
## 5 2000 Divorced 25 White Not applicable Not str d… None Not … 1
## 6 2000 Married 25 White $20000 - 24999 Strong de… Prot… Sout… NA
## 7 2000 Never married 36 White $25000 or more Not str r… Chri… Not … 3
## 8 2000 Divorced 44 White $7000 to 7999 Ind,near … Prot… Luth… NA
## 9 2000 Married 44 White $25000 or more Not str d… Prot… Other 0
## 10 2000 Married 47 White $25000 or more Strong re… Prot… Sout… 3
## # ℹ 21,473 more rows
unordered factor levels
# Transform data: average tv hours by religion
tvhours_by_relig <- gss_cat %>%
group_by(relig) %>%
summarise(
avg_tvhours = mean(tvhours, na.rm = TRUE))
# Plot
tvhours_by_relig %>%
ggplot(aes(x = avg_tvhours, y = relig)) +
geom_point()
ordered factor levels
tvhours_by_relig %>%
ggplot(aes(x = avg_tvhours, y = fct_reorder(.f = relig, .x = avg_tvhours))) +
geom_point() +
# Labeling
labs(y= NULL, x = "Mean Daily Hours Watching TV")
moving a single level to the front
tvhours_by_relig %>%
ggplot(aes(x = avg_tvhours,
y = fct_reorder(.f = relig, .x = avg_tvhours) %>%
fct_relevel("Don't Know"))) +
geom_point() +
# Labeling
labs(y= NULL, x = "Mean Daily Hours Watching TV")
## Warning: 1 unknown level in `f`: Don't Know
## 1 unknown level in `f`: Don't Know
gss_cat %>% distinct(race)
## # A tibble: 3 × 1
## race
## <fct>
## 1 White
## 2 Black
## 3 Other
# Recode
gss_cat %>%
# Rename Levels
mutate (race_rev = fct_recode(race, "African American" ="Black")) %>%
select(race, race_rev) %>%
filter(race == "Black")
## # A tibble: 3,129 × 2
## race race_rev
## <fct> <fct>
## 1 Black African American
## 2 Black African American
## 3 Black African American
## 4 Black African American
## 5 Black African American
## 6 Black African American
## 7 Black African American
## 8 Black African American
## 9 Black African American
## 10 Black African American
## # ℹ 3,119 more rows
# Collapse multiple levels into one
gss_cat %>%
mutate(race_co1 = fct_collapse(race, "Minority" = c("Black", "Other"))) %>%
select(race, race_co1) %>%
filter(race != "White")
## # A tibble: 5,088 × 2
## race race_co1
## <fct> <fct>
## 1 Black Minority
## 2 Black Minority
## 3 Black Minority
## 4 Other Minority
## 5 Black Minority
## 6 Other Minority
## 7 Black Minority
## 8 Other Minority
## 9 Black Minority
## 10 Black Minority
## # ℹ 5,078 more rows
# Lump small levels into other levels
gss_cat %>% count(race)
## # A tibble: 3 × 2
## race n
## <fct> <int>
## 1 Other 1959
## 2 Black 3129
## 3 White 16395
gss_cat %>% mutate(race_lump = fct_lump(race)) %>% distinct(race_lump)
## # A tibble: 2 × 1
## race_lump
## <fct>
## 1 White
## 2 Other
# from strings
"2022-10-28" %>% ymd()
## [1] "2022-10-28"
# from mubers
20221028 %>% ymd()
## [1] "2022-10-28"
"2022-10-28 4-41-30" %>% ymd_hms()
## [1] "2022-10-28 04:41:30 UTC"
flights %>%
select(year:day, hour, minute) %>%
mutate(departure = make_datetime(year = year, month = month,
day = day, hour, min = minute))
## # A tibble: 336,776 × 6
## year month day hour minute departure
## <int> <int> <int> <dbl> <dbl> <dttm>
## 1 2013 1 1 5 15 2013-01-01 05:15:00
## 2 2013 1 1 5 29 2013-01-01 05:29:00
## 3 2013 1 1 5 40 2013-01-01 05:40:00
## 4 2013 1 1 5 45 2013-01-01 05:45:00
## 5 2013 1 1 6 0 2013-01-01 06:00:00
## 6 2013 1 1 5 58 2013-01-01 05:58:00
## 7 2013 1 1 6 0 2013-01-01 06:00:00
## 8 2013 1 1 6 0 2013-01-01 06:00:00
## 9 2013 1 1 6 0 2013-01-01 06:00:00
## 10 2013 1 1 6 0 2013-01-01 06:00:00
## # ℹ 336,766 more rows
# from date to date-time
today() %>% as_datetime()
## [1] "2024-04-09 UTC"
# From date-time to date
now() %>% as_date()
## [1] "2024-04-09"
date_time <- ymd_hms("2022-10-28 18-18-18")
date_time
## [1] "2022-10-28 18:18:18 UTC"
year(date_time)
## [1] 2022
month(date_time, label = TRUE, abbr = FALSE)
## [1] October
## 12 Levels: January < February < March < April < May < June < ... < December
yday(date_time)
## [1] 301
mday(date_time)
## [1] 28
wday(date_time, label = TRUE, abbr = FALSE)
## [1] Friday
## 7 Levels: Sunday < Monday < Tuesday < Wednesday < Thursday < ... < Saturday
make_datetime_100 <- function(year, month, day, time) {
make_datetime(year, month, day, time %/% 100, time %% 100)
}
flights_dt <- flights %>%
filter(!is.na(dep_time), !is.na(arr_time)) %>%
mutate(
dep_time = make_datetime_100(year, month, day, dep_time),
arr_time = make_datetime_100(year, month, day, arr_time),
sched_dep_time = make_datetime_100(year, month, day, sched_dep_time),
sched_arr_time = make_datetime_100(year, month, day, sched_arr_time)
) %>%
select(origin, dest, ends_with("delay"), ends_with("time"))
flights_dt %>%
transmute(wday = wday(dep_time, label = TRUE)) %>%
ggplot(aes(wday)) +
geom_bar()
#### Rounding
# floor_date for raounding down
flights_dt %>%
mutate(week = floor_date(dep_time, "month")) %>%
select(dep_time, week) %>%
sample_n(10)
## # A tibble: 10 × 2
## dep_time week
## <dttm> <dttm>
## 1 2013-05-29 09:43:00 2013-05-01 00:00:00
## 2 2013-05-17 18:28:00 2013-05-01 00:00:00
## 3 2013-01-22 14:26:00 2013-01-01 00:00:00
## 4 2013-05-03 14:33:00 2013-05-01 00:00:00
## 5 2013-12-30 20:04:00 2013-12-01 00:00:00
## 6 2013-06-19 12:35:00 2013-06-01 00:00:00
## 7 2013-02-07 21:27:00 2013-02-01 00:00:00
## 8 2013-03-12 07:40:00 2013-03-01 00:00:00
## 9 2013-07-18 08:23:00 2013-07-01 00:00:00
## 10 2013-09-06 07:52:00 2013-09-01 00:00:00
# ceiling_date for rounding up
flights_dt %>%
mutate(week = ceiling_date(dep_time, "month")) %>%
select(dep_time, week) %>%
sample_n(10)
## # A tibble: 10 × 2
## dep_time week
## <dttm> <dttm>
## 1 2013-01-14 17:40:00 2013-02-01 00:00:00
## 2 2013-12-31 22:18:00 2014-01-01 00:00:00
## 3 2013-04-30 09:41:00 2013-05-01 00:00:00
## 4 2013-05-05 18:09:00 2013-06-01 00:00:00
## 5 2013-11-26 07:09:00 2013-12-01 00:00:00
## 6 2013-08-17 19:39:00 2013-09-01 00:00:00
## 7 2013-06-01 09:01:00 2013-07-01 00:00:00
## 8 2013-08-27 17:09:00 2013-09-01 00:00:00
## 9 2013-03-16 11:42:00 2013-04-01 00:00:00
## 10 2013-07-10 08:26:00 2013-08-01 00:00:00
flights_dt %>%
mutate(dep_hour = update(dep_time, yday = 1)) %>%
select(dep_time, dep_hour) %>%
sample_n(10)
## # A tibble: 10 × 2
## dep_time dep_hour
## <dttm> <dttm>
## 1 2013-07-11 20:09:00 2013-01-01 20:09:00
## 2 2013-02-10 15:49:00 2013-01-01 15:49:00
## 3 2013-06-04 10:29:00 2013-01-01 10:29:00
## 4 2013-11-07 18:08:00 2013-01-01 18:08:00
## 5 2013-06-05 07:15:00 2013-01-01 07:15:00
## 6 2013-01-30 06:42:00 2013-01-01 06:42:00
## 7 2013-01-02 20:24:00 2013-01-01 20:24:00
## 8 2013-07-27 06:23:00 2013-01-01 06:23:00
## 9 2013-11-22 05:59:00 2013-01-01 05:59:00
## 10 2013-06-30 19:28:00 2013-01-01 19:28:00
dseconds(15)
## [1] "15s"
#> [1] "15s"
dminutes(10)
## [1] "600s (~10 minutes)"
#> [1] "600s (~10 minutes)"
dhours(c(12, 24))
## [1] "43200s (~12 hours)" "86400s (~1 days)"
#> [1] "43200s (~12 hours)" "86400s (~1 days)"
ddays(0:5)
## [1] "0s" "86400s (~1 days)" "172800s (~2 days)"
## [4] "259200s (~3 days)" "345600s (~4 days)" "432000s (~5 days)"
#> [1] "0s" "86400s (~1 days)" "172800s (~2 days)"
#> [4] "259200s (~3 days)" "345600s (~4 days)" "432000s (~5 days)"
dweeks(3)
## [1] "1814400s (~3 weeks)"
#> [1] "1814400s (~3 weeks)"
dyears(1)
## [1] "31557600s (~1 years)"
#> [1] "31557600s (~1 years)"