NVD IEVA FLPP 2024

Modified

April 26, 2024

Packages

Set theme

Load the data

Remove P02 and n25 from

Recode Sex_ID

Eliminate Vecums, and change vecums_2 to Age

Add the MONTH

Merge 18 with 17 years old

EDA

NAs

Explore the patter of missingness

EDA

[1] 2887699      13

How many unique patients?

x
178810

In Latvia are 356.864 children 0 to 17 years-old

Source: https://data.stat.gov.lv/pxweb/lv/OSP_PUB/START__POP__IR__IRD/IRD041

So, this represents

[1] 50.10592

How many girls and boys

Age

SEX_ID n percent
Female 1465929 50.8%
Male 1421770 49.2%

How many specialist attentions PER patient?

SPEC_KODS visits_count
Zobārsts 129215
Zobu higiēnists 111225
Radiologs 10517
Ortodonts 5180
Bērnu zobārsts 4150
Anesteziologs 3454
Mutes, sejas un žokļu ķirurgs 1380
Radiologa asistents 1367
Zobārsta asistents 342
Zobu tehniķis 159
Periodontologs 78

FINAL ANALYSIS

ZOBARSTS AND BERNU ZOBARSTS

Filter only Zobarsts and Bernu Z

Zobārsts Bērnu zobārsts

1. How many children visits 1, 2, or more times

Visits n
1 59437
2 29292
3 16797
4 10015
5 5906
6 3554
7 2146
8 1324
9 839
> 9 visits 1480
Visits n
1 59437
2 29292
3 16797
4 10015
> 4 visits 15249

2. How many children per age?

AGE n percent
0 41 0.0%
1 855 0.7%
2 2302 1.8%
3 3490 2.7%
4 5584 4.3%
5 8220 6.3%
6 10000 7.6%
7 12532 9.6%
8 10835 8.3%
9 10096 7.7%
10 9374 7.2%
11 8091 6.2%
12 7886 6.0%
13 8122 6.2%
14 8635 6.6%
15 8298 6.3%
16 7586 5.8%
17 8843 6.8%

This is interesting, seems children attend mostly in three ages.

3. How many times children goes to dentists in different age groups?

Now filter the unique PAC_ID

AGE 1 More than 1 time
0 39 2
1 784 71
2 2012 290
3 2604 886
4 3243 2341
5 3847 4373
6 4135 5865
7 5345 7187
8 4395 6440
9 4348 5748
10 4281 5093
11 3845 4246
12 3799 4087
13 3696 4426
14 3747 4888
15 3469 4829
16 3063 4523
17 2785 6058

4. How many patients per clinic?

AI_KODS n
Less than 500 patients 38454
010019111 8007
010020301 7186
010064120 6063
010064521 4254
050024301 4224
010001535 4191
130000045 3147
170020401 2339
010064514 2153
210020301 1994
801000009 1977
210000058 1762
420200053 1740
170064506 1735
270064503 1673
620200014 1588
740200016 1576
400200025 1509
010064301 1459
210000043 1318
900200089 1317
740200059 1246
019277203 1127
270064004 1099
010000343 1090
090000093 1053
010054211 1024
019564503 1009
800600020 993
840200048 992
130024102 976
741400017 955
620200062 925
010064502 917
741400025 915
801600085 899
807600014 838
840200026 835
010001411 800
600200001 790
740200008 757
002000005 712
270000064 699
360800006 698
010001818 689
019164506 663
019464501 663
010064522 607
010001666 595
110000048 593
761200024 572
006000002 568
801200002 553
050000127 550
400200052 547
761200011 547
170077201 545
700200034 537
880200029 525
001000035 519
901200021 502

4.1. Visits per clinic

PAC_ID = Patient

MAN_DAT = Date of the visit

MP_CODE = Manipulations

AI_KODS Total_Visits
010019111 14750
010020301 14692
010064120 13672
050024301 10146
010064521 9911
130000045 8972
010001535 8680
210020301 5968
010064514 5216
170020401 5046
270064503 4985
801000009 4783
270064004 4696
170064506 4208
210000058 3679
620200014 3679
420200053 3671
210000043 3279
900200089 3203
740200016 3108
740200059 3103
800600020 2958
380200022 2943
741400025 2934
400200025 2855
010000343 2649
010001881 2561
010064502 2438
019277203 2434
001000035 2276
019464501 2244
010064301 2224
270000064 2213
010054211 2177
090000093 2106
801600085 2106
019564503 2059
010001411 2043
010001818 2014
806077202 2014
840200048 2013
840200026 1973
006000002 1927
741400017 1840
600200001 1780
010064522 1677
130024102 1655
740200008 1642
360800006 1593
620200062 1583
801400003 1566
010001581 1488
380200011 1471
002000005 1357
807600014 1344
019164506 1338
681800001 1319
400200052 1272
110000048 1256
801200002 1170
130064502 1156
901200021 1152
880200029 1115
806900003 1107
800800006 1084
010000427 1044
090000016 1035
900200086 1029
010001666 1027
500200032 1014
700200034 1000
500200006 994
050000127 983
170077201 974
761200024 962
761200011 950
010044004 916
885100007 894
381600004 885
380200037 884
840200079 877
887600002 871
801600087 869
010001873 859
010001714 850
460800005 846
090020301 844
130000014 835
270000014 834
090000079 804
941600013 772
010077210 763
010064545 762
019164502 751
321400001 747
540200007 747
740200001 738
006000005 737
010001914 732
500200010 723
601000004 719
500200063 712
801000013 701
001000031 681
010000832 680
540200010 677
900200056 661
620200018 659
660200027 658
961600005 656
250000169 652
270000024 650
130000098 630
701400004 627
800600008 621
019364501 616
420200056 612
010001913 608
110000023 608
801800014 598
940200032 595
019464004 593
019464507 591
460200019 586
019577201 577
381600005 576
809600010 560
561800004 558
700200067 556
090024101 554
424700004 552
090000113 547
684900003 545
661400003 544
840200025 542
360200066 530
600200018 529
320200002 528
010000104 525
130064002 523
620200008 522
010064111 519
409500011 518
540200004 506
010000178 498
680200006 494
250000030 492
680200023 481
681000002 480
010001157 479
406477201 475
010001409 471
019164058 463
500200020 462
900200087 460
805200007 459
740200096 456
941600023 456
901200014 446
660200040 445
406464501 443
250000041 439
328277201 436
440200002 435
010064544 432
090077206 430
090077202 423
901200007 421
460200040 415
641000005 414
170000154 410
421200007 401
700800012 397
010001978 392
010064013 384
420200080 370
440200012 364
641000007 364
429300002 363
010001054 353
090065208 341
420200059 339
010001043 338
110000003 338
170000197 335
940200018 330
967300003 325
387500004 321
381600009 315
460800012 314
320200023 311
800600019 311
023000003 302
010000319 298
940200007 298
320200009 297
460200002 297
640600015 297
250000042 294
010001180 293
250000040 290
880200055 284
270000003 275
900200088 271
326100006 267
640600008 267
880200080 267
270064507 253
641000001 252
680200007 248
420200030 241
681000014 239
010000095 238
740600009 235
400200032 234
028000001 233
760200015 232
320200041 225
801600054 223
320200037 222
010065217 215
010001408 206
905700001 203
460200039 200
429300010 195
001000008 194
740600007 191
460200038 186
010001897 181
807600024 175
019677203 171
760200019 165
807477201 164
250000045 163
661400007 161
740200015 153
621200004 150
880200036 147
250000046 142
010054114 140
326100005 140
780200012 139
940200019 135
940200006 124
050000017 110
741000006 109
500200012 107
010077222 106
741400016 105
900200082 103
961000003 93
020000002 85
051000003 78
808477201 76
460200023 75
900200058 68
468900002 67
888300008 65
010000232 62
807635202 61
019464518 46
170000046 45
420200068 45
090000057 39
880200056 38
680200030 34
010011803 33
328200003 20
NA 3

5. How many patients per region?

PAC_ATVK n
Less than 500 patients 40279
10093 10861
10094 10852
10092 7303
10095 6119
2000 5374
5000 4669
10096 4018
3000 3860
6000 3098
4000 3007
7000 2602
40010 2093
39410 1571
45200 1346
31010 1337
44420 1295
10091 1293
52210 1208
34420 1182
54010 1118
26200 1111
39200 1100
48200 1059
NA 1053
41400 973
39400 882
25200 857
46210 853
41200 781
40200 715
23400 696
33200 680
44400 635
34210 621
23410 611
40220 606
37210 526
24200 518
36200 515
51220 510
44410 503
29200 500

6. Why are the children coming?

IEMESLS n
Regulâru apskati 1530903
NA 178893
Akûtâm sâpçm 167247
Traumu 14322

7. Extract the month from MAN_DAT

8. Reasons of visit per month

IEMESLS 1 2 3 4 5 6 7 8 9 10 11 12
Regulâru apskati 19008 17999 23556 20277 22314 21213 19081 23397 22967 23318 24165 19270
Akûtâm sâpçm 1960 1922 2167 1978 2205 1994 1946 2476 2559 2352 2390 2230
NA 1649 1746 2403 1953 2353 2360 2071 2853 2485 2533 2716 2285
Traumu 133 138 193 169 174 160 187 183 217 190 171 157

REMOVE OBJECT zobarst

HYGIENISTS

Filter only Zobu higiēnists

1. How many children visits 1, 2, or more times

Visits n
1 98086
2 12210
3 857
4 70
5 1
6 1
Visits n
1 98086
2 12210
3 857
4 70
> 4 visits 2

2. How many children per age?

AGE n percent
1 124 0.1%
2 1755 1.6%
3 4256 3.8%
4 5448 4.9%
5 6468 5.8%
6 7073 6.4%
7 8908 8.0%
8 9029 8.1%
9 7993 7.2%
10 7692 6.9%
11 7459 6.7%
12 7812 7.0%
13 8286 7.4%
14 8114 7.3%
15 7535 6.8%
16 6490 5.8%
17 6783 6.1%

This is interesting, seems children attend mostly in three ages.

3. How many times children goes to dentists in different age groups?

Now filter the unique PAC_ID

AGE 1 More than 1 time
1 123 1
2 1716 39
3 4039 217
4 5186 262
5 6112 356
6 6662 411
7 7329 1579
8 7188 1841
9 7290 703
10 7026 666
11 6149 1310
12 5936 1876
13 6807 1479
14 7408 706
15 6918 617
16 6029 461
17 6168 615

4. How many patients per clinic?

AI_KODS n
Less than 500 patients 22497
420200053 8016
010019111 6876
010020301 6654
010064120 5351
050024301 3354
740200059 3325
010064521 3251
010001535 3183
010064514 2968
130000045 2857
210000058 2668
620200014 2021
090000057 1894
170020401 1805
210000043 1770
250000169 1718
010064301 1576
170064506 1555
400200025 1465
761200024 1354
019277203 1319
270064503 1195
090024001 1172
019564503 1111
019164506 1103
807600014 1062
801600085 1016
028000001 1007
840200048 960
805200007 948
010054211 934
760200003 846
900200089 845
620200062 804
010000343 759
800600020 713
320200041 694
880200029 690
010001873 689
010064502 671
010001818 657
741400025 638
801400003 626
840200026 623
130024102 614
900200006 610
010000832 603
460200002 582
400200052 548
170077202 513
740200016 511
NA 4

4.1. Visits per clinic

PAC_ID = Patient

MAN_DAT = Date of the visit

MP_CODE = Manipulations

AI_KODS Total_Visits
420200053 8703
010019111 7756
010020301 7343
010064120 6156
740200059 4026
010064521 3943
050024301 3642
010001535 3459
010064514 3330
210000058 3143
130000045 3139
620200014 2316
090000057 2273
210000043 2027
170020401 1954
250000169 1844
400200025 1757
170064506 1724
010064301 1701
090024001 1554
019277203 1473
761200024 1465
270064503 1281
807600014 1240
019564503 1237
019164506 1197
801600085 1182
840200048 1102
010054211 1095
028000001 1090
805200007 1035
900200089 999
620200062 922
760200003 920
010000343 825
741400025 787
800600020 778
010001873 765
801400003 740
320200041 738
880200029 738
010064502 726
010001818 712
460200002 703
840200026 669
010000832 658
900200006 656
130024102 641
641000022 638
400200052 624
806900003 619
740200016 587
019464507 576
661400001 558
170077202 556
090000016 529
660200027 523
170077201 512
360200066 512
010044004 507
210020301 505
360800006 476
170000197 475
620200018 471
050000127 454
680200030 452
090077202 442
270000064 432
010064522 423
800800006 419
700200067 414
901200007 405
801600087 394
741400017 391
019364501 377
961600005 350
840200079 348
420200080 341
010001978 340
600200001 329
801800014 328
420200059 324
740200008 323
010077210 321
019464004 321
010064111 315
010001913 309
130000098 289
001000031 288
941600023 286
801200002 283
130064502 281
641600001 278
090024101 273
019164502 269
090065208 269
010000319 262
010001714 262
010001914 248
420200030 247
800600019 247
020000002 239
801000013 239
010001408 238
010064545 236
010001897 198
270064004 197
500200063 196
010064013 191
010001411 189
090000093 187
010001054 181
320200002 180
010001581 177
010001180 168
010064544 168
270000014 167
006000005 164
010001409 160
051000003 158
326100006 156
010000427 154
010001157 148
740600007 138
800600008 138
621200004 132
700800012 132
429300010 126
010000095 124
010065217 121
250000041 120
880200080 97
888300008 91
840200025 88
010001043 86
328200003 72
940200019 72
680200006 70
019164058 68
328277201 68
740200001 63
001000008 61
170000046 56
905700001 53
090077206 42
420200068 37
002000005 34
010054114 25
601000001 11
NA 4

5. How many patients per region?

PAC_ATVK n
Less than 500 patients 35185
10094 10089
10093 8710
10092 6316
10095 5592
5000 4576
3000 3467
2000 3465
10096 3352
6000 2834
40010 2340
4000 1969
39410 1666
54010 1610
7000 1364
10091 1353
48200 1331
26200 1196
39200 1168
44420 1067
52210 1037
34420 990
45200 969
39400 945
25200 844
23400 786
NA 784
33200 724
44400 718
46210 706
23410 677
31010 623
40200 603
34210 593
28210 565
36200 507
41400 504

8. Reasons of visit per month

IEMESLS 1 2 3 4 5 6 7 8 9 10 11 12
Regulâru apskati 7280 6903 10201 8716 9975 8550 7095 10406 9720 10248 10276 8207
NA 708 757 964 863 948 1057 956 1447 1132 1295 1047 805
Akûtâm sâpçm 268 335 505 444 380 635 467 672 578 524 543 451
Traumu 1 2 4 2 NA 3 NA 3 3 1 1 1

REMOVE OBJECT hygienist

ALL 8

8. Reasons of visit per month

IEMESLS 1 2 3 4 5 6 7 8 9 10 11 12
Regulâru apskati 27326 25841 34524 30038 32890 30732 27175 34888 33283 34478 35122 28253
Akûtâm sâpçm 2368 2403 2879 2549 2713 2813 2579 3286 3275 3007 3066 2813
NA 2350 2459 3328 2791 3273 3357 2934 4169 3513 3735 3716 2990
Traumu 138 141 198 172 176 165 189 187 222 192 172 158

2024 April 11

Las preguntas siguentes de datos:

1. Verificamos, si no hemos dejado muchos datos sin analyzar:

Cuantas filas no tienen datos de SPEC_KODS?

# A tibble: 1 × 1
  NA_Count
     <int>
1        0

1. Verifikamos, cuantas visitas hay - cuantas veces esta el codigo 70001 (variable MP_CODE)

[1] 447849