Parallel analysis suggests that the number of factors = 1 and the number of components = 1
AlmereAttitude
Number of components: 1
KMO criteria is to low (< .6) for:
Almere1att
mean KMO: 0.62
EFA factor loadings (1 factor solution):
Loadings:
MR1
Almere1att 1.000
Almere3att 0.681
Almere2att 0.570
MR1
SS loadings 1.788
Proportion Var 0.596
CFA summary and fit statistics:
lavaan 0.6.17 ended normally after 19 iterations
Estimator ML
Optimization method NLMINB
Number of model parameters 6
Number of observations 216
Model Test User Model:
Standard Scaled
Test Statistic 0.000 0.000
Degrees of freedom 0 0
Model Test Baseline Model:
Test statistic 154.233 148.594
Degrees of freedom 3 3
P-value 0.000 0.000
Scaling correction factor 1.038
User Model versus Baseline Model:
Comparative Fit Index (CFI) 1.000 1.000
Tucker-Lewis Index (TLI) 1.000 1.000
Robust Comparative Fit Index (CFI) NA
Robust Tucker-Lewis Index (TLI) NA
Loglikelihood and Information Criteria:
Loglikelihood user model (H0) -689.854 -689.854
Loglikelihood unrestricted model (H1) -689.854 -689.854
Akaike (AIC) 1391.707 1391.707
Bayesian (BIC) 1411.959 1411.959
Sample-size adjusted Bayesian (SABIC) 1392.946 1392.946
Root Mean Square Error of Approximation:
RMSEA 0.000 NA
90 Percent confidence interval - lower 0.000 NA
90 Percent confidence interval - upper 0.000 NA
P-value H_0: RMSEA <= 0.050 NA NA
P-value H_0: RMSEA >= 0.080 NA NA
Robust RMSEA 0.000
90 Percent confidence interval - lower 0.000
90 Percent confidence interval - upper 0.000
P-value H_0: Robust RMSEA <= 0.050 NA
P-value H_0: Robust RMSEA >= 0.080 NA
Standardized Root Mean Square Residual:
SRMR 0.000 0.000
Parameter Estimates:
Standard errors Sandwich
Information bread Observed
Observed information based on Hessian
Latent Variables:
Estimate Std.Err z-value P(>|z|) Std.lv Std.all
AlmereAttitude =~
Almere1att 1.000 0.739 0.945
Almere3att 0.571 0.112 5.123 0.000 0.422 0.605
Almere2att 0.673 0.117 5.734 0.000 0.498 0.551
Variances:
Estimate Std.Err z-value P(>|z|) Std.lv Std.all
.Almere1att 0.066 0.083 0.794 0.427 0.066 0.107
.Almere3att 0.309 0.052 5.937 0.000 0.309 0.634
.Almere2att 0.569 0.068 8.386 0.000 0.569 0.697
AlmereAttitude 0.546 0.108 5.057 0.000 1.000 1.000
CFA first 6 Modification Indices:
[1] lhs op rhs mi epc sepc.lv sepc.all sepc.nox
<0 Zeilen> (oder row.names mit Länge 0)
Parallel analysis suggests that the number of factors = 1 and the number of components = 1
LiWangAutonomy
Number of components: 1
EFA factor loadings (1 factor solution):
Loadings:
MR1
LiWang3autonomy 0.710
LiWang1autonomy 0.539
LiWang2autonomy 0.686
MR1
SS loadings 1.266
Proportion Var 0.422
CFA summary and fit statistics:
lavaan 0.6.17 ended normally after 24 iterations
Estimator ML
Optimization method NLMINB
Number of model parameters 6
Number of observations 216
Model Test User Model:
Standard Scaled
Test Statistic 0.000 0.000
Degrees of freedom 0 0
Model Test Baseline Model:
Test statistic 92.541 56.237
Degrees of freedom 3 3
P-value 0.000 0.000
Scaling correction factor 1.646
User Model versus Baseline Model:
Comparative Fit Index (CFI) 1.000 1.000
Tucker-Lewis Index (TLI) 1.000 1.000
Robust Comparative Fit Index (CFI) NA
Robust Tucker-Lewis Index (TLI) NA
Loglikelihood and Information Criteria:
Loglikelihood user model (H0) -1084.868 -1084.868
Loglikelihood unrestricted model (H1) -1084.868 -1084.868
Akaike (AIC) 2181.737 2181.737
Bayesian (BIC) 2201.988 2201.988
Sample-size adjusted Bayesian (SABIC) 2182.975 2182.975
Root Mean Square Error of Approximation:
RMSEA 0.000 NA
90 Percent confidence interval - lower 0.000 NA
90 Percent confidence interval - upper 0.000 NA
P-value H_0: RMSEA <= 0.050 NA NA
P-value H_0: RMSEA >= 0.080 NA NA
Robust RMSEA 0.000
90 Percent confidence interval - lower 0.000
90 Percent confidence interval - upper 0.000
P-value H_0: Robust RMSEA <= 0.050 NA
P-value H_0: Robust RMSEA >= 0.080 NA
Standardized Root Mean Square Residual:
SRMR 0.000 0.000
Parameter Estimates:
Standard errors Sandwich
Information bread Observed
Observed information based on Hessian
Latent Variables:
Estimate Std.Err z-value P(>|z|) Std.lv Std.all
LiWangAutonomy =~
LiWang3autonmy 1.000 0.886 0.682
LiWang1autonmy 0.821 0.179 4.589 0.000 0.728 0.556
LiWang2autonmy 1.146 0.269 4.263 0.000 1.016 0.648
Variances:
Estimate Std.Err z-value P(>|z|) Std.lv Std.all
.LiWang3autonmy 0.901 0.269 3.353 0.001 0.901 0.534
.LiWang1autonmy 1.184 0.193 6.144 0.000 1.184 0.691
.LiWang2autonmy 1.425 0.244 5.827 0.000 1.425 0.580
LiWangAutonomy 0.785 0.281 2.797 0.005 1.000 1.000
CFA first 6 Modification Indices:
[1] lhs op rhs mi epc sepc.lv sepc.all sepc.nox
<0 Zeilen> (oder row.names mit Länge 0)
vars n mean sd median trimmed mad min max range skew kurtosis se
X1 1 215 30.19 8.55 29 29.03 7.41 18 67 49 1.66 3.6 0.58
table(questionnaireCAMs$socio_sex)
Female Male
75 141
table(questionnaireCAMs$socio_student)
No Yes
113 86
table(questionnaireCAMs$socio_employment)
Due to start a new job within the next month
4
Full-Time
84
Not in paid work (e.g. homemaker', 'retired or disabled)
7
Other
20
Part-Time
56
Unemployed (and job seeking)
19
## split by robotpsych::describe(socio_age ~ choosen_Robot, data = questionnaireCAMs)
Descriptive statistics by group
choosen_Robot: Rettungsroboter
vars n mean sd median trimmed mad min max range skew kurtosis
socio_age 1 117 30.09 8.29 29 29.19 7.41 18 63 45 1.48 3.2
se
socio_age 0.77
------------------------------------------------------------
choosen_Robot: sozialer Assistenzroboter
vars n mean sd median trimmed mad min max range skew kurtosis se
socio_age 1 98 30.31 8.9 28.5 28.91 6.67 18 67 49 1.8 3.74 0.9
# prepare data### add pre postnetworkIndicators_pre$timepoint <-"pre"networkIndicators_post$timepoint <-"post"### long data formatnetworkIndicators_long <-rbind(networkIndicators_pre, networkIndicators_post)### add IDnetworkIndicators_long$ID <-c(1:(nrow(networkIndicators_long) /2), 1:(nrow(networkIndicators_long) /2))### reformat variablenetworkIndicators_long$timepoint <-factor(networkIndicators_long$timepoint, levels =c("pre", "post"), ordered =FALSE)### add type robotnetworkIndicators_long$typeRobot <-ifelse(test =!is.na(networkIndicators_long$valence_micro_Rettungsroboter), yes ="rescue robots", no ="socially assistive robots")table(networkIndicators_long$typeRobot)
rescue robots socially assistive robots
234 198
table(questionnaireCAMs$choosen_Robot) *2
Rettungsroboter sozialer Assistenzroboter
234 198
### post - pre difference of robot -> average valence# ! all type of changesfit1 <- afex::aov_car(mean_valence_macro ~ timepoint*typeRobot +Error(ID / timepoint),data = networkIndicators_long)
Converting to factor: typeRobot
Contrasts set to contr.sum for the following variables: typeRobot
fit1a <- afex::aov_ez(id ="ID", dv ="mean_valence_macro",data = networkIndicators_long, between=c("typeRobot"), within=c("timepoint"))
Converting to factor: typeRobot
Contrasts set to contr.sum for the following variables: typeRobot
You have loaded plyr after dplyr - this is likely to cause problems.
If you need functions from both plyr and dplyr, please load plyr first, then dplyr:
library(plyr); library(dplyr)
### post - pre difference of robot -> average valence# ! only type of change B, Dtmp_ids <- questionnaireCAMs$PROLIFIC_PID[questionnaireCAMs$typeChange %in%c("B", "D")]networkIndicators_long_BD <- networkIndicators_long[networkIndicators_long$participantCAM %in% tmp_ids,]dim(networkIndicators_long); dim(networkIndicators_long_BD)
### post - pre difference of robot -> number of concepts# ! all type of changesfit1 <- afex::aov_car(num_nodes_macro ~ timepoint*typeRobot +Error(ID / timepoint),data = networkIndicators_long)
Converting to factor: typeRobot
Contrasts set to contr.sum for the following variables: typeRobot
fit1a <- afex::aov_ez(id ="ID", dv ="num_nodes_macro",data = networkIndicators_long, between=c("typeRobot"), within=c("timepoint"))
Converting to factor: typeRobot
Contrasts set to contr.sum for the following variables: typeRobot
### post - pre difference of robot -> number of concepts# ! only type of change B, Dfit1 <- afex::aov_car(num_nodes_macro ~ timepoint*typeRobot +Error(ID / timepoint),data = networkIndicators_long_BD)
Converting to factor: typeRobot
Contrasts set to contr.sum for the following variables: typeRobot
fit1a <- afex::aov_ez(id ="ID", dv ="num_nodes_macro",data = networkIndicators_long_BD, between=c("typeRobot"), within=c("timepoint"))
Converting to factor: typeRobot
Contrasts set to contr.sum for the following variables: typeRobot
Question: Ihre angepasste Mind-Map hatte eine durchschnittliche emotionale Bewertung von XXX, diese war im Vergleich zu ihrer anfangs gezeichneten Mind-Map (durchschnittliche emotionale Bewertung von XXX) XXX. Bitte erklären Sie, warum Sie diese XXX wahrgenommen haben: