Planted Conifer Forests - Richness by camera

Monitoring started in 2014 (5 monitoring cycles), Each site has only one plot that is far from Settlements.

There are 15 sites total, each site has 5 sampling points

Let’s first validate the data:

## [1] "Settlements has 1 level"
## [1] "Far"
## [1] "Subunit has 3 levels"
## [1] "Carmel"  "Galilee" "Judea"
## [1] "Site has 15 levels"
##  [1] "Aderet"          "Amatzia"         "Bat Shlomo"      "Eitanim"        
##  [5] "Elyakim"         "Eshtaol"         "Givat Yeshayahu" "Kabri"          
##  [9] "Kerem Maharal"   "Manara"          "Meron"           "Ofer"           
## [13] "Ramat Hashofet"  "Ramot Naftali"   "Zuriel"
## [1] "Transect has 15 levels"
##  [1] "Aderet Far"          "Amatzia Far"         "Bat Shlomo Far"     
##  [4] "Eitanim Far"         "Elyakim Far"         "Eshtaol Far"        
##  [7] "Givat Yeshayahu Far" "Kabri Far"           "Kerem Maharal Far"  
## [10] "Manara Far"          "Meron Far"           "Ofer Far"           
## [13] "Ramat Hashofet Far"  "Ramot Naftali Far"   "Zuriel Far"
## [1] "Transect with date has 75 levels"
##  [1] "Aderet Far_02_06_2013"          "Aderet Far_16_10_2021"         
##  [3] "Aderet Far_21_08_2017"          "Aderet Far_24_05_2015"         
##  [5] "Aderet Far_28_10_2019"          "Amatzia Far_02_06_2013"        
##  [7] "Amatzia Far_04_12_2021"         "Amatzia Far_12_02_2018"        
##  [9] "Amatzia Far_17_12_2019"         "Amatzia Far_24_05_2015"        
## [11] "Bat Shlomo Far_18_11_2017"      "Bat Shlomo Far_21_08_2021"     
## [13] "Bat Shlomo Far_28_06_2015"      "Bat Shlomo Far_30_06_2013"     
## [15] "Bat Shlomo Far_30_11_2019"      "Eitanim Far_01_10_2017"        
## [17] "Eitanim Far_08_10_2021"         "Eitanim Far_09_06_2015"        
## [19] "Eitanim Far_09_11_2019"         "Eitanim Far_17_06_2013"        
## [21] "Elyakim Far_04_09_2021"         "Elyakim Far_06_09_2015"        
## [23] "Elyakim Far_07_11_2017"         "Elyakim Far_16_02_2020"        
## [25] "Elyakim Far_30_06_2013"         "Eshtaol Far_01_12_2019"        
## [27] "Eshtaol Far_07_06_2015"         "Eshtaol Far_17_06_2013"        
## [29] "Eshtaol Far_22_10_2017"         "Eshtaol Far_22_10_2021"        
## [31] "Givat Yeshayahu Far_03_06_2013" "Givat Yeshayahu Far_16_10_2021"
## [33] "Givat Yeshayahu Far_23_05_2015" "Givat Yeshayahu Far_23_08_2017"
## [35] "Givat Yeshayahu Far_28_10_2019" "Kabri Far_09_08_2015"          
## [37] "Kabri Far_14_12_2019"           "Kabri Far_15_10_2021"          
## [39] "Kabri Far_22_12_2017"           "Kabri Far_28_07_2013"          
## [41] "Kerem Maharal Far_04_09_2021"   "Kerem Maharal Far_06_09_2015"  
## [43] "Kerem Maharal Far_07_11_2017"   "Kerem Maharal Far_16_06_2013"  
## [45] "Kerem Maharal Far_16_11_2019"   "Manara Far_03_10_2021"         
## [47] "Manara Far_06_08_2015"          "Manara Far_08_12_2017"         
## [49] "Manara Far_11_01_2020"          "Manara Far_15_07_2013"         
## [51] "Meron Far_08_12_2017"           "Meron Far_10_01_2020"          
## [53] "Meron Far_15_07_2013"           "Meron Far_15_07_2015"          
## [55] "Meron Far_31_10_2021"           "Ofer Far_03_06_2015"           
## [57] "Ofer Far_07_11_2017"            "Ofer Far_10_07_2021"           
## [59] "Ofer Far_16_06_2013"            "Ofer Far_16_11_2019"           
## [61] "Ramat Hashofet Far_01_07_2013"  "Ramat Hashofet Far_18_11_2017" 
## [63] "Ramat Hashofet Far_26_01_2020"  "Ramat Hashofet Far_26_06_2015" 
## [65] "Ramat Hashofet Far_30_11_2021"  "Ramot Naftali Far_08_12_2017"  
## [67] "Ramot Naftali Far_11_01_2020"   "Ramot Naftali Far_14_07_2013"  
## [69] "Ramot Naftali Far_14_07_2015"   "Ramot Naftali Far_17_10_2021"  
## [71] "Zuriel Far_06_08_2015"          "Zuriel Far_15_10_2021"         
## [73] "Zuriel Far_22_12_2017"          "Zuriel Far_28_07_2013"         
## [75] "Zuriel Far_28_12_2019"
## [1] "RICHNESS WITH RARE SPECIES"

Explore abundances:

##    Canis aureus     Canis lupus   Capra nubiana  Equus hemionus  Gazella dorcas 
##            1350              85               0               0               0 
## Gazella gazella   Hyaena hyaena  Hystrix indica  Lepus capensis     Meles meles 
##             671              43             655              27              74 
##   Oryx leucoryx      Sus scrofa   Vulpes vulpes 
##               0            2025             683
## Overlapping points were shifted along the y-axis to make them visible.
## 
##  PIPING TO 2nd MVFACTOR

Sus scrofa only:

Fix outlier observation of 186 wild boar, by setting the count to be equal to the highest count observed.

## Overlapping points were shifted along the y-axis to make them visible.
## 
##  PIPING TO 2nd MVFACTOR

Fix outlier observations of canis lupus, gazella gazella and hystrix indica, by setting the count to be equal to the highest count observed for the species.

## Overlapping points were shifted along the y-axis to make them visible.
## 
##  PIPING TO 2nd MVFACTOR

richness abundance Subunit rescaled_Time.Diff cosinus_Monitoring.Time.Diff sinus_Monitoring.Time.Diff Site Transect Transect_with_date Distance_rescaled
Min. :0.000 Min. : 0.00 Carmel :185 Min. :-1.5480 Min. :-0.99750 Min. :-0.99061 Bat Shlomo : 42 Bat Shlomo Far : 42 Bat Shlomo Far_28_06_2015 : 10 Min. :-0.86297
1st Qu.:1.000 1st Qu.: 3.00 Galilee:185 1st Qu.:-0.9164 1st Qu.:-0.83907 1st Qu.:-0.64354 Zuriel : 42 Zuriel Far : 42 Bat Shlomo Far_30_06_2013 : 10 1st Qu.:-0.23014
Median :2.000 Median : 6.00 Judea :181 Median :-0.1491 Median : 0.10159 Median : 0.07072 Ramat Hashofet: 41 Ramat Hashofet Far: 41 Kabri Far_09_08_2015 : 10 Median : 0.04593
Mean :2.334 Mean : 10.19 NA Mean :-0.2012 Mean :-0.01326 Mean : 0.01837 Ramot Naftali : 41 Ramot Naftali Far : 41 Ofer Far_16_06_2013 : 10 Mean : 0.12773
3rd Qu.:3.000 3rd Qu.: 13.00 NA 3rd Qu.: 0.5379 3rd Qu.: 0.71796 3rd Qu.: 0.69608 Aderet : 39 Aderet Far : 39 Ramat Hashofet Far_01_07_2013: 10 3rd Qu.: 0.31041
Max. :7.000 Max. :207.00 NA Max. : 1.1366 Max. : 0.99859 Max. : 0.99952 Eitanim : 39 Eitanim Far : 39 Aderet Far_16_10_2021 : 9 Max. : 1.86789
NA NA NA NA NA NA (Other) :307 (Other) :307 (Other) :492 NA

Subunit sinus_Monitoring.Time.Diff cosinus_Monitoring.Time.Diff rescaled_Time.Diff Site Transect Transect_with_date Distance_rescaled
Subunit 1.0000000 0.0269857 -0.2929366 0.0722343 -0.3990533 -0.3990533 -0.3976850 -0.0426536
sinus_Monitoring.Time.Diff 0.0269857 1.0000000 0.0004384 -0.1194839 0.0164255 0.0164255 0.0072200 0.0290773
cosinus_Monitoring.Time.Diff -0.2929366 0.0004384 1.0000000 -0.1073206 0.1899325 0.1899325 0.1723042 0.0083534
rescaled_Time.Diff 0.0722343 -0.1194839 -0.1073206 1.0000000 -0.0131054 -0.0131054 -0.0115445 -0.0524663
Site -0.3990533 0.0164255 0.1899325 -0.0131054 1.0000000 1.0000000 0.9979562 -0.2302542
Transect -0.3990533 0.0164255 0.1899325 -0.0131054 1.0000000 1.0000000 0.9979562 -0.2302542
Transect_with_date -0.3976850 0.0072200 0.1723042 -0.0115445 0.9979562 0.9979562 1.0000000 -0.2313637
Distance_rescaled -0.0426536 0.0290773 0.0083534 -0.0524663 -0.2302542 -0.2302542 -0.2313637 1.0000000

Community analysis using package MVabund

Table of abundances per species by camera ID

## [1] 551  14
## [1] 279
## [1] 13
## [1] 0
## [1] 0
## [1] 0
## [1] 145
## [1] 35
## [1] 201
## [1] 10
## [1] 49
## [1] 0
## [1] 301
## [1] 253

298 cameras. Species with a minimum of 10 cameras - Canis aureus, Canis lupus, Gazella gazella, Hyaena hyaena, Hystrix indica, Lepus capensis, Meles meles, Sus scorfa and Vulpus vulpus

##    Canis aureus     Canis lupus   Capra nubiana  Equus hemionus  Gazella dorcas 
##            1350              53               0               0               0 
## Gazella gazella   Hyaena hyaena  Hystrix indica  Lepus capensis     Meles meles 
##             658              43             635              27              74 
##   Oryx leucoryx      Sus scrofa   Vulpes vulpes 
##               0            1872             683
##    Canis.aureus     Canis.lupus Gazella.gazella   Hyaena.hyaena  Hystrix.indica 
##            1350              53             658              43             635 
##  Lepus.capensis     Meles.meles      Sus.scrofa   Vulpes.vulpes 
##              27              74            1872             683

Species with 20 individuals or more - Canis aureus, Canis lupus, Gazella gazella, Hyaena hyaena, Hystrix indica, Lepus capensis, Meles meles, Sus scorfa and Vulpus vulpus

Left with 9 species

##       nb       po 
## 1073.793 1711.534
## [1] "POISSON"

## [1] "NEGATIVE BINOMIAL"

prefer negative binomial because standardized residuals are smaller.

##       nb       po      nb1 
## 1073.793 1711.534 1113.120
##       nb       po      nb1      nb2 
## 1073.793 1711.534 1113.120 1030.756
##       nb       po      nb1      nb2      nb3 
## 1073.793 1711.534 1113.120 1030.756 1030.756
##       nb       po      nb1      nb2      nb3      nb4 
## 1073.793 1711.534 1113.120 1030.756 1030.756 1030.756
##       nb       po      nb1      nb2      nb3      nb4      nb5 
## 1073.793 1711.534 1113.120 1030.756 1030.756 1030.756 1030.756

Transect, Site and Subunit improve the model. Will proceed with Subunit:

Many GLM with Sub-unit - no interactions

## Single term deletions
## 
## Model:
## spp_no_rare ~ rescaled_Time.Diff + cosinus_Monitoring.Time.Diff + 
##     sinus_Monitoring.Time.Diff + Subunit
##                              Df     AIC
## <none>                           9664.1
## rescaled_Time.Diff            9  9670.2
## cosinus_Monitoring.Time.Diff  9  9685.0
## sinus_Monitoring.Time.Diff    9  9664.6
## Subunit                      18 10018.1

Drop sine

## Single term deletions
## 
## Model:
## spp_no_rare ~ rescaled_Time.Diff + cosinus_Monitoring.Time.Diff + 
##     Subunit
##                              Df     AIC
## <none>                           9664.6
## rescaled_Time.Diff            9  9674.7
## cosinus_Monitoring.Time.Diff  9  9687.5
## Subunit                      18 10019.4

Final model includes Sub-unit, cosin and time

## 
## Test statistics:
##                              wald value Pr(>wald)    
## (Intercept)                      21.318     0.001 ***
## rescaled_Time.Diff                5.034     0.015 *  
## cosinus_Monitoring.Time.Diff      6.370     0.001 ***
## SubunitGalilee                    6.610     0.001 ***
## SubunitJudea                     16.740     0.001 ***
## --- 
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
## 
## Test statistic:  20.82, p-value: 0.001 
## Arguments:
##  Test statistics calculated assuming response assumed to be uncorrelated 
##  P-value calculated using 999 resampling iterations via pit.trap resampling (to account for correlation in testing).
## Analysis of Deviance Table
## 
## Model: spp_no_rare ~ rescaled_Time.Diff + cosinus_Monitoring.Time.Diff + Subunit
## 
## Multivariate test:
##                              Res.Df Df.diff   Dev Pr(>Dev)    
## (Intercept)                     550                           
## rescaled_Time.Diff              549       1  19.3    0.029 *  
## cosinus_Monitoring.Time.Diff    548       1  57.3    0.001 ***
## Subunit                         546       2 390.8    0.001 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Univariate Tests:
##                              Canis.aureus          Canis.lupus         
##                                       Dev Pr(>Dev)         Dev Pr(>Dev)
## (Intercept)                                                            
## rescaled_Time.Diff                  3.308    0.441       1.662    0.663
## cosinus_Monitoring.Time.Diff        0.659    0.803      10.822    0.015
## Subunit                             7.977    0.075      22.196    0.001
##                              Gazella.gazella          Hyaena.hyaena         
##                                          Dev Pr(>Dev)           Dev Pr(>Dev)
## (Intercept)                                                                 
## rescaled_Time.Diff                     0.504    0.727         5.571    0.156
## cosinus_Monitoring.Time.Diff           0.112    0.932         0.007    0.943
## Subunit                               48.317    0.001         5.972    0.133
##                              Hystrix.indica          Lepus.capensis         
##                                         Dev Pr(>Dev)            Dev Pr(>Dev)
## (Intercept)                                                                 
## rescaled_Time.Diff                    1.121    0.727          0.886    0.727
## cosinus_Monitoring.Time.Diff          8.583    0.036          6.387    0.105
## Subunit                              31.449    0.001         10.968    0.031
##                              Meles.meles          Sus.scrofa         
##                                      Dev Pr(>Dev)        Dev Pr(>Dev)
## (Intercept)                                                          
## rescaled_Time.Diff                 0.824    0.727      3.436    0.441
## cosinus_Monitoring.Time.Diff       2.586    0.424     25.244    0.001
## Subunit                            8.647    0.061    254.523    0.001
##                              Vulpes.vulpes         
##                                        Dev Pr(>Dev)
## (Intercept)                                        
## rescaled_Time.Diff                   1.989    0.643
## cosinus_Monitoring.Time.Diff         2.854    0.424
## Subunit                              0.779    0.734
## Arguments:
##  Test statistics calculated assuming uncorrelated response (for faster computation) 
## P-value calculated using 999 iterations via PIT-trap resampling.

Multivariate test shows that Sub-unit, cosin time of sampling and time affect species composition However time variable is not significant for any of the species. Therefore re-run without time variable.

## Single term deletions
## 
## Model:
## spp_no_rare ~ cosinus_Monitoring.Time.Diff + Subunit
##                              Df     AIC
## <none>                           9674.7
## cosinus_Monitoring.Time.Diff  9  9698.2
## Subunit                      18 10019.8

## 
## Test statistics:
##                              wald value Pr(>wald)    
## (Intercept)                      21.216     0.001 ***
## cosinus_Monitoring.Time.Diff      6.525     0.001 ***
## SubunitGalilee                    6.556     0.001 ***
## SubunitJudea                     16.535     0.001 ***
## --- 
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
## 
## Test statistic:  20.32, p-value: 0.001 
## Arguments:
##  Test statistics calculated assuming response assumed to be uncorrelated 
##  P-value calculated using 999 resampling iterations via pit.trap resampling (to account for correlation in testing).
## Analysis of Deviance Table
## 
## Model: spp_no_rare ~ cosinus_Monitoring.Time.Diff + Subunit
## 
## Multivariate test:
##                              Res.Df Df.diff   Dev Pr(>Dev)    
## (Intercept)                     550                           
## cosinus_Monitoring.Time.Diff    549       1  58.2    0.001 ***
## Subunit                         547       2 381.0    0.001 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Univariate Tests:
##                              Canis.aureus          Canis.lupus         
##                                       Dev Pr(>Dev)         Dev Pr(>Dev)
## (Intercept)                                                            
## cosinus_Monitoring.Time.Diff        1.135    0.623       8.267    0.044
## Subunit                             9.674    0.056      21.146    0.001
##                              Gazella.gazella          Hyaena.hyaena         
##                                          Dev Pr(>Dev)           Dev Pr(>Dev)
## (Intercept)                                                                 
## cosinus_Monitoring.Time.Diff           0.042    0.895         0.179    0.895
## Subunit                               48.026    0.001         4.871    0.221
##                              Hystrix.indica          Lepus.capensis         
##                                         Dev Pr(>Dev)            Dev Pr(>Dev)
## (Intercept)                                                                 
## cosinus_Monitoring.Time.Diff          9.523    0.032          6.075    0.102
## Subunit                              30.398    0.001         10.936    0.035
##                              Meles.meles          Sus.scrofa         
##                                      Dev Pr(>Dev)        Dev Pr(>Dev)
## (Intercept)                                                          
## cosinus_Monitoring.Time.Diff       2.822    0.332     26.363    0.001
## Subunit                            8.211    0.082    246.983    0.001
##                              Vulpes.vulpes         
##                                        Dev Pr(>Dev)
## (Intercept)                                        
## cosinus_Monitoring.Time.Diff         3.793    0.255
## Subunit                              0.787    0.726
## Arguments:
##  Test statistics calculated assuming uncorrelated response (for faster computation) 
## P-value calculated using 999 iterations via PIT-trap resampling.

Final model includes Sub-unit and cosin time of sampling

Canis lupus

remove Carmel observations because they are all zeros.

## 
## Call:
## glm.nb(formula = Canis.lupus ~ cosinus_Monitoring.Time.Diff + 
##     Subunit, data = env_data[Subunit != "Carmel"], init.theta = 0.03403984248, 
##     link = log)
## 
## Deviance Residuals: 
##      Min        1Q    Median        3Q       Max  
## -0.49674  -0.35621  -0.17970  -0.03864   1.45013  
## 
## Coefficients:
##                              Estimate Std. Error z value Pr(>|z|)    
## (Intercept)                   -2.1294     0.5320  -4.003 6.25e-05 ***
## cosinus_Monitoring.Time.Diff   2.3499     0.7578   3.101  0.00193 ** 
## SubunitJudea                  -3.3018     1.1958  -2.761  0.00576 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for Negative Binomial(0.034) family taken to be 1)
## 
##     Null deviance: 58.999  on 365  degrees of freedom
## Residual deviance: 34.979  on 363  degrees of freedom
## AIC: 159.01
## 
## Number of Fisher Scoring iterations: 1
## 
## 
##               Theta:  0.0340 
##           Std. Err.:  0.0123 
## 
##  2 x log-likelihood:  -151.0100
## Loading required package: Cairo
## Warning: Removed 3 rows containing missing values or values outside the scale range
## (`geom_point()`).
## Removed 3 rows containing missing values or values outside the scale range
## (`geom_point()`).

## Warning: Removed 3 rows containing missing values or values outside the scale range
## (`geom_point()`).

Compute predicted average difference in C. lupus abundance between Judea and Galilee based on model:

## [1] "C. lupus abundance in Galilee is higher than Judea by 2616.11505848149 %"

Gazella gazella

##                  (Intercept) cosinus_Monitoring.Time.Diff 
##                   -1.4415372                    0.2833693 
##               SubunitGalilee                 SubunitJudea 
##                    1.5479080                    2.3092798
##                              Canis.aureus Canis.lupus Gazella.gazella
## (Intercept)                    1.15639383  -15.265119      -1.4415371
## cosinus_Monitoring.Time.Diff  -0.01277888    2.349795       0.2833692
## SubunitGalilee                -0.23563268   13.135720       1.5479081
## SubunitJudea                  -0.65695209    9.833992       2.3092794
##                              Hyaena.hyaena Hystrix.indica Lepus.capensis
## (Intercept)                    -2.38932951     -0.1085528      -2.789939
## cosinus_Monitoring.Time.Diff    0.01226337     -0.2274492       1.545720
## SubunitGalilee                 -0.88707807     -0.4336437     -12.261799
## SubunitJudea                    0.13990694      0.7355202      -1.202820
##                              Meles.meles Sus.scrofa Vulpes.vulpes
## (Intercept)                   -1.5382238  1.4022934    0.13707508
## cosinus_Monitoring.Time.Diff  -0.6454851  0.3089406    0.21357692
## SubunitGalilee                -0.6794879  0.2706287    0.04402336
## SubunitJudea                  -1.2169837 -3.1504033    0.16147197
## [1] 658

##  Subunit emmean    SE  df asymp.LCL asymp.UCL
##  Carmel  -1.445 0.233 Inf    -1.902    -0.989
##  Galilee  0.103 0.191 Inf    -0.272     0.477
##  Judea    0.864 0.193 Inf     0.485     1.243
## 
## Results are given on the log (not the response) scale. 
## Confidence level used: 0.95
##  contrast         estimate    SE  df z.ratio p.value
##  Carmel - Galilee   -1.548 0.297 Inf  -5.206  <.0001
##  Carmel - Judea     -2.309 0.310 Inf  -7.458  <.0001
##  Galilee - Judea    -0.761 0.278 Inf  -2.742  0.0061
## 
## Results are given on the log (not the response) scale. 
## P value adjustment: fdr method for 3 tests

Compute predicted average difference in G. gazella abundance among all subunits based on model:

## [1] "G. gazella abundance in Judea is higher than Carmel by 906.717136260404 %"
## [1] "G. gazella abundance in Judea is higher than Galilee by 114.121147912162 %"
## [1] "G. gazella abundance in Galilee is higher than Carmel by 370.16240388987 %"

Hystrix indica

##                  (Intercept) cosinus_Monitoring.Time.Diff 
##                   -0.1085528                   -0.2274502 
##               SubunitGalilee                 SubunitJudea 
##                   -0.4336430                    0.7355195
##                              Canis.aureus Canis.lupus Gazella.gazella
## (Intercept)                    1.15639383  -15.265119      -1.4415371
## cosinus_Monitoring.Time.Diff  -0.01277888    2.349795       0.2833692
## SubunitGalilee                -0.23563268   13.135720       1.5479081
## SubunitJudea                  -0.65695209    9.833992       2.3092794
##                              Hyaena.hyaena Hystrix.indica Lepus.capensis
## (Intercept)                    -2.38932951     -0.1085528      -2.789939
## cosinus_Monitoring.Time.Diff    0.01226337     -0.2274492       1.545720
## SubunitGalilee                 -0.88707807     -0.4336437     -12.261799
## SubunitJudea                    0.13990694      0.7355202      -1.202820
##                              Meles.meles Sus.scrofa Vulpes.vulpes
## (Intercept)                   -1.5382238  1.4022934    0.13707508
## cosinus_Monitoring.Time.Diff  -0.6454851  0.3089406    0.21357692
## SubunitGalilee                -0.6794879  0.2706287    0.04402336
## SubunitJudea                  -1.2169837 -3.1504033    0.16147197

##  Subunit emmean    SE  df asymp.LCL asymp.UCL
##  Carmel  -0.106 0.150 Inf    -0.400     0.189
##  Galilee -0.539 0.161 Inf    -0.854    -0.224
##  Judea    0.630 0.145 Inf     0.345     0.915
## 
## Results are given on the log (not the response) scale. 
## Confidence level used: 0.95
##  contrast         estimate    SE  df z.ratio p.value
##  Carmel - Galilee    0.434 0.219 Inf   1.981  0.0476
##  Carmel - Judea     -0.736 0.213 Inf  -3.450  0.0008
##  Galilee - Judea    -1.169 0.220 Inf  -5.314  <.0001
## 
## Results are given on the log (not the response) scale. 
## P value adjustment: fdr method for 3 tests

Compute predicted average difference in H. indica abundance among all subunits based on model:

## [1] "H. indica abundance in Judea is higher than Carmel by 108.656566090015 %"
## [1] "H. indica abundance in Judea is higher than Galilee by 221.929523047568 %"
## [1] "H. indica abundance in Carmel is higher than Galilee by 54.2867924456719 %"

Lepus cepensis

remove Galilee observations because they are all zeros.

## 
## Call:
## glm.nb(formula = Lepus.capensis ~ cosinus_Monitoring.Time.Diff + 
##     Subunit, data = env_data[Subunit != "Galilee"], init.theta = 0.03079447589, 
##     link = log)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -0.3782  -0.2946  -0.1809  -0.1036   2.0200  
## 
## Coefficients:
##                              Estimate Std. Error z value Pr(>|z|)    
## (Intercept)                   -2.7900     0.5638  -4.948 7.49e-07 ***
## cosinus_Monitoring.Time.Diff   1.5458     0.6681   2.314   0.0207 *  
## SubunitJudea                  -1.2028     0.9361  -1.285   0.1988    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for Negative Binomial(0.0308) family taken to be 1)
## 
##     Null deviance: 43.181  on 365  degrees of freedom
## Residual deviance: 32.236  on 363  degrees of freedom
## AIC: 127.01
## 
## Number of Fisher Scoring iterations: 1
## 
## 
##               Theta:  0.0308 
##           Std. Err.:  0.0145 
## 
##  2 x log-likelihood:  -119.0130

After removing Galilee, subunit is not a significant factor on Lepus capensis abundance.

Sus scrofa

although significant, exclude model because appears again later in model with subunit*time interaction.

Many GLM with interaction between subunit and time

## Single term deletions
## 
## Model:
## spp_no_rare ~ Subunit * rescaled_Time.Diff + cosinus_Monitoring.Time.Diff + 
##     sinus_Monitoring.Time.Diff
##                              Df    AIC
## <none>                          9649.3
## cosinus_Monitoring.Time.Diff  9 9675.6
## sinus_Monitoring.Time.Diff    9 9651.3
## Subunit:rescaled_Time.Diff   18 9664.1

drop sine

## Single term deletions
## 
## Model:
## spp_no_rare ~ Subunit * rescaled_Time.Diff + cosinus_Monitoring.Time.Diff
##                              Df    AIC
## <none>                          9651.3
## cosinus_Monitoring.Time.Diff  9 9681.0
## Subunit:rescaled_Time.Diff   18 9664.6

Final model includes cosin time, and the interaction between subunit and time

## 
## Test statistics:
##                                   wald value Pr(>wald)    
## (Intercept)                           19.897     0.001 ***
## SubunitGalilee                         6.900     0.001 ***
## SubunitJudea                          13.712     0.001 ***
## rescaled_Time.Diff                     4.659     0.018 *  
## cosinus_Monitoring.Time.Diff           7.041     0.001 ***
## SubunitGalilee:rescaled_Time.Diff      3.729     0.095 .  
## SubunitJudea:rescaled_Time.Diff        5.697     0.002 ** 
## --- 
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
## 
## Test statistic:  19.43, p-value: 0.001 
## Arguments:
##  Test statistics calculated assuming response assumed to be uncorrelated 
##  P-value calculated using 999 resampling iterations via pit.trap resampling (to account for correlation in testing).
## Analysis of Deviance Table
## 
## Model: spp_no_rare ~ Subunit * rescaled_Time.Diff + cosinus_Monitoring.Time.Diff
## 
## Multivariate test:
##                              Res.Df Df.diff   Dev Pr(>Dev)    
## (Intercept)                     550                           
## Subunit                         548       2 397.8    0.001 ***
## rescaled_Time.Diff              547       1  28.7    0.005 ** 
## cosinus_Monitoring.Time.Diff    546       1  40.9    0.001 ***
## Subunit:rescaled_Time.Diff      544       2  49.3    0.001 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Univariate Tests:
##                              Canis.aureus          Canis.lupus         
##                                       Dev Pr(>Dev)         Dev Pr(>Dev)
## (Intercept)                                                            
## Subunit                            10.799    0.041      20.911    0.002
## rescaled_Time.Diff                   1.08    0.720       3.385    0.403
## cosinus_Monitoring.Time.Diff        0.066    0.921      10.384    0.029
## Subunit:rescaled_Time.Diff         10.124    0.047       0.828    0.750
##                              Gazella.gazella          Hyaena.hyaena         
##                                          Dev Pr(>Dev)           Dev Pr(>Dev)
## (Intercept)                                                                 
## Subunit                               45.182    0.001         5.049    0.312
## rescaled_Time.Diff                     0.168    0.720         6.355    0.118
## cosinus_Monitoring.Time.Diff           3.583    0.280         0.147    0.921
## Subunit:rescaled_Time.Diff             5.377    0.347         2.992    0.714
##                              Hystrix.indica          Lepus.capensis         
##                                         Dev Pr(>Dev)            Dev Pr(>Dev)
## (Intercept)                                                                 
## Subunit                              35.944    0.001         12.792    0.020
## rescaled_Time.Diff                    2.088    0.653          0.995    0.720
## cosinus_Monitoring.Time.Diff          3.121    0.280          4.454    0.201
## Subunit:rescaled_Time.Diff            2.935    0.714          0.658    0.750
##                              Meles.meles          Sus.scrofa         
##                                      Dev Pr(>Dev)        Dev Pr(>Dev)
## (Intercept)                                                          
## Subunit                            4.537    0.312    262.411    0.001
## rescaled_Time.Diff                 1.242    0.720      11.33    0.023
## cosinus_Monitoring.Time.Diff       6.278    0.103      9.464    0.040
## Subunit:rescaled_Time.Diff         1.194    0.750     23.219    0.002
##                              Vulpes.vulpes         
##                                        Dev Pr(>Dev)
## (Intercept)                                        
## Subunit                              0.172    0.927
## rescaled_Time.Diff                   2.073    0.653
## cosinus_Monitoring.Time.Diff         3.377    0.280
## Subunit:rescaled_Time.Diff           1.961    0.750
## Arguments:
##  Test statistics calculated assuming uncorrelated response (for faster computation) 
## P-value calculated using 999 iterations via PIT-trap resampling.

Multivariate test shows that subunit x time and cosin time affect species composition

Sus scrofa

##                       (Intercept)                    SubunitGalilee 
##                        1.41055124                        0.26258260 
##                      SubunitJudea                rescaled_Time.Diff 
##                       -3.73253998                        0.03934223 
##      cosinus_Monitoring.Time.Diff SubunitGalilee:rescaled_Time.Diff 
##                        0.37166673                        0.15529898 
##   SubunitJudea:rescaled_Time.Diff 
##                        1.60040468
##                                   Canis.aureus Canis.lupus Gazella.gazella
## (Intercept)                         0.92543101 -15.4308536      -1.8332971
## SubunitGalilee                     -0.03074436  12.6432995       1.8857368
## SubunitJudea                       -0.36640001  -2.2782729       2.7685771
## rescaled_Time.Diff                 -0.42047111  -0.5434586      -0.7183219
## cosinus_Monitoring.Time.Diff        0.09945115   2.4821167       0.4126787
## SubunitGalilee:rescaled_Time.Diff   0.43345435  -0.3680742       0.5778458
## SubunitJudea:rescaled_Time.Diff     0.61366644  -7.8694219       0.8264836
##                                   Hyaena.hyaena Hystrix.indica Lepus.capensis
## (Intercept)                          -2.3908425    -0.06936227     -3.4165292
## SubunitGalilee                       -1.3611449    -0.47199689    -11.7373210
## SubunitJudea                          0.1675971     0.68651809     -0.4949739
## rescaled_Time.Diff                    0.1818044     0.15367707     -0.7543741
## cosinus_Monitoring.Time.Diff          0.1975235    -0.22235591      2.0190428
## SubunitGalilee:rescaled_Time.Diff     1.0969510     0.13600423      0.9141765
## SubunitJudea:rescaled_Time.Diff       0.4022983    -0.22366184      0.9937627
##                                   Meles.meles Sus.scrofa Vulpes.vulpes
## (Intercept)                       -1.46354722  1.4105503    0.06199016
## SubunitGalilee                    -0.77235943  0.2625836    0.12571886
## SubunitJudea                      -1.34887689 -3.7325367    0.22039441
## rescaled_Time.Diff                 0.32320482  0.0393417   -0.19055860
## cosinus_Monitoring.Time.Diff      -0.70482555  0.3716676    0.22892562
## SubunitGalilee:rescaled_Time.Diff -0.42232025  0.1552999    0.25459349
## SubunitJudea:rescaled_Time.Diff   -0.08611442  1.6004043    0.09657084

Test whether temporal trend is different from zero

##  Subunit rescaled_Time.Diff.trend     SE  df asymp.LCL asymp.UCL
##  Carmel                    0.0393 0.1031 Inf  -0.16264     0.241
##  Galilee                   0.1946 0.0986 Inf   0.00135     0.388
##  Judea                     1.6397 0.3869 Inf   0.88150     2.398
## 
## Confidence level used: 0.95
##  Subunit rescaled_Time.Diff.trend     SE  df z.ratio p.value
##  Carmel                    0.0393 0.1031 Inf   0.382  0.7026
##  Galilee                   0.1946 0.0986 Inf   1.974  0.0726
##  Judea                     1.6397 0.3869 Inf   4.238  0.0001
## 
## P value adjustment: fdr method for 3 tests

Compute predicted decrease in S. scrofa across monitoring time span based on model:

## [1] "start date: 02/06/2013"
## [1] "end date: 04/12/2021"
## [1] "Increase from 0.0102188269796157 to 0.834094255411367 which is 8062.32877878448 %"

Test whether spatial differences in subunit are different from zero

##  contrast         rescaled_Time.Diff estimate    SE  df z.ratio p.value
##  Carmel - Galilee             -0.201   -0.231 0.133 Inf  -1.734  0.0829
##  Carmel - Judea               -0.201    4.055 0.420 Inf   9.653  <.0001
##  Galilee - Judea              -0.201    4.286 0.419 Inf  10.221  <.0001
## 
## Results are given on the log (not the response) scale. 
## P value adjustment: fdr method for 3 tests

Compute predicted average difference in S. scrofa abundance between Judea-Carmel and Judea-Galilee based on model:

## [1] "S. scrofa abundance in Carmel is higher than Judea by 5707.25986834471 %"
## [1] "S. scrofa abundance in Galilee is higher than Judea by 7213.71399264238 %"

Canis aureus

##                       (Intercept)                    SubunitGalilee 
##                        0.92543131                       -0.03074468 
##                      SubunitJudea                rescaled_Time.Diff 
##                       -0.36640052                       -0.42047027 
##      cosinus_Monitoring.Time.Diff SubunitGalilee:rescaled_Time.Diff 
##                        0.09945076                        0.43345366 
##   SubunitJudea:rescaled_Time.Diff 
##                        0.61366445
##                                   Canis.aureus Canis.lupus Gazella.gazella
## (Intercept)                         0.92543101 -15.4308536      -1.8332971
## SubunitGalilee                     -0.03074436  12.6432995       1.8857368
## SubunitJudea                       -0.36640001  -2.2782729       2.7685771
## rescaled_Time.Diff                 -0.42047111  -0.5434586      -0.7183219
## cosinus_Monitoring.Time.Diff        0.09945115   2.4821167       0.4126787
## SubunitGalilee:rescaled_Time.Diff   0.43345435  -0.3680742       0.5778458
## SubunitJudea:rescaled_Time.Diff     0.61366644  -7.8694219       0.8264836
##                                   Hyaena.hyaena Hystrix.indica Lepus.capensis
## (Intercept)                          -2.3908425    -0.06936227     -3.4165292
## SubunitGalilee                       -1.3611449    -0.47199689    -11.7373210
## SubunitJudea                          0.1675971     0.68651809     -0.4949739
## rescaled_Time.Diff                    0.1818044     0.15367707     -0.7543741
## cosinus_Monitoring.Time.Diff          0.1975235    -0.22235591      2.0190428
## SubunitGalilee:rescaled_Time.Diff     1.0969510     0.13600423      0.9141765
## SubunitJudea:rescaled_Time.Diff       0.4022983    -0.22366184      0.9937627
##                                   Meles.meles Sus.scrofa Vulpes.vulpes
## (Intercept)                       -1.46354722  1.4105503    0.06199016
## SubunitGalilee                    -0.77235943  0.2625836    0.12571886
## SubunitJudea                      -1.34887689 -3.7325367    0.22039441
## rescaled_Time.Diff                 0.32320482  0.0393417   -0.19055860
## cosinus_Monitoring.Time.Diff      -0.70482555  0.3716676    0.22892562
## SubunitGalilee:rescaled_Time.Diff -0.42232025  0.1552999    0.25459349
## SubunitJudea:rescaled_Time.Diff   -0.08611442  1.6004043    0.09657084

Test whether temporal trend is different from zero

## [1] "Canis aureus"
##  Subunit rescaled_Time.Diff.trend    SE  df asymp.LCL asymp.UCL
##  Carmel                    -0.420 0.144 Inf    -0.704    -0.137
##  Galilee                    0.013 0.141 Inf    -0.264     0.290
##  Judea                      0.193 0.151 Inf    -0.103     0.490
## 
## Confidence level used: 0.95
##  Subunit rescaled_Time.Diff.trend    SE  df z.ratio p.value
##  Carmel                    -0.420 0.144 Inf  -2.911  0.0108
##  Galilee                    0.013 0.141 Inf   0.092  0.9267
##  Judea                      0.193 0.151 Inf   1.278  0.3021
## 
## P value adjustment: fdr method for 3 tests

Compute predicted decrease in C. aureus across monitoring time span based on model:

## [1] "start date: 02/06/2013"
## [1] "end date: 04/12/2021"
## [1] "Decrease from 5.20890920835611 to 1.68465894204887 which is -67.6581242893166 %"

Test whether spatial differences in subunit are different from zero

##  contrast         rescaled_Time.Diff estimate    SE  df z.ratio p.value
##  Carmel - Galilee             -0.201    0.118 0.190 Inf   0.621  0.5349
##  Carmel - Judea               -0.201    0.490 0.205 Inf   2.395  0.0499
##  Galilee - Judea              -0.201    0.372 0.203 Inf   1.834  0.1000
## 
## Results are given on the log (not the response) scale. 
## P value adjustment: fdr method for 3 tests

Compute predicted average difference in C. aureus abundance between Carmel and Judea based on model:

## [1] "C. aureus abundance in Carmel is higher than Judea by 63.6586044456967 %"

n = 551 (total number of cameras)

total abundance = 5613 (9 species), total abundance without rare species is the same

Session information

## ─ Session info ───────────────────────────────────────────────────────────────
##  setting  value
##  version  R version 4.2.3 (2023-03-15 ucrt)
##  os       Windows 10 x64 (build 22631)
##  system   x86_64, mingw32
##  ui       RTerm
##  language (EN)
##  collate  Hebrew_Israel.utf8
##  ctype    Hebrew_Israel.utf8
##  tz       Asia/Jerusalem
##  date     2024-04-09
##  pandoc   3.1.1 @ C:/Program Files/RStudio/resources/app/bin/quarto/bin/tools/ (via rmarkdown)
## 
## ─ Packages ───────────────────────────────────────────────────────────────────
##  package      * version    date (UTC) lib source
##  abind          1.4-7      2017-09-03 [1] R-Forge (R 4.2.3)
##  betareg        3.2-0      2021-02-09 [1] R-Forge (R 4.2.3)
##  boot           1.3-28.1   2022-11-22 [1] CRAN (R 4.2.3)
##  bslib          0.4.2      2022-12-16 [1] CRAN (R 4.2.3)
##  cachem         1.0.7      2023-02-24 [1] CRAN (R 4.2.3)
##  Cairo        * 1.6-0      2022-07-05 [1] CRAN (R 4.2.2)
##  callr          3.7.3      2022-11-02 [1] CRAN (R 4.2.3)
##  car          * 3.1-2      2023-03-30 [1] CRAN (R 4.2.3)
##  carData      * 3.0-5      2022-01-06 [1] CRAN (R 4.2.3)
##  cellranger     1.1.0      2016-07-27 [1] CRAN (R 4.2.3)
##  chron        * 2.3-61     2023-05-02 [1] CRAN (R 4.2.3)
##  cli            3.6.1      2023-03-23 [1] CRAN (R 4.2.3)
##  cluster        2.1.4      2022-08-22 [1] CRAN (R 4.2.3)
##  coda           0.19-4     2020-09-30 [1] CRAN (R 4.2.3)
##  codetools      0.2-19     2023-02-01 [1] CRAN (R 4.2.2)
##  colorspace     2.1-1      2023-03-08 [1] R-Forge (R 4.2.2)
##  crayon         1.5.2      2022-09-29 [1] CRAN (R 4.2.3)
##  curl           5.0.0      2023-01-12 [1] CRAN (R 4.2.3)
##  data.table   * 1.14.8     2023-02-17 [1] CRAN (R 4.2.3)
##  devtools     * 2.4.5      2022-10-11 [1] CRAN (R 4.2.3)
##  digest         0.6.31     2022-12-11 [1] CRAN (R 4.2.3)
##  doParallel     1.0.17     2022-02-07 [1] CRAN (R 4.2.3)
##  dplyr        * 1.1.1      2023-03-22 [1] CRAN (R 4.2.3)
##  ecoCopula    * 1.0.2      2022-03-02 [1] CRAN (R 4.2.3)
##  ellipsis       0.3.2      2021-04-29 [1] CRAN (R 4.2.3)
##  emmeans      * 1.8.6      2023-05-11 [1] CRAN (R 4.2.3)
##  estimability   1.4.1      2022-08-05 [1] CRAN (R 4.2.1)
##  evaluate       0.20       2023-01-17 [1] CRAN (R 4.2.3)
##  extrafont    * 0.19       2023-01-18 [1] CRAN (R 4.2.2)
##  extrafontdb    1.0        2012-06-11 [1] CRAN (R 4.2.0)
##  fansi          1.0.4      2023-01-22 [1] CRAN (R 4.2.3)
##  farver         2.1.1      2022-07-06 [1] CRAN (R 4.2.3)
##  fastmap        1.1.1      2023-02-24 [1] CRAN (R 4.2.3)
##  flexmix        2.3-19     2023-03-16 [1] CRAN (R 4.2.3)
##  foreach        1.5.2      2022-02-02 [1] CRAN (R 4.2.3)
##  Formula        1.2-6      2023-02-25 [1] R-Forge (R 4.2.2)
##  fs             1.6.1      2023-02-06 [1] CRAN (R 4.2.3)
##  generics       0.1.3      2022-07-05 [1] CRAN (R 4.2.3)
##  ggplot2      * 3.5.0      2024-02-23 [1] CRAN (R 4.2.3)
##  glm2           1.2.1      2018-08-11 [1] CRAN (R 4.2.0)
##  glue           1.6.2      2022-02-24 [1] CRAN (R 4.2.3)
##  gtable         0.3.3      2023-03-21 [1] CRAN (R 4.2.3)
##  highr          0.10       2022-12-22 [1] CRAN (R 4.2.3)
##  htmltools      0.5.5      2023-03-23 [1] CRAN (R 4.2.3)
##  htmlwidgets    1.6.2      2023-03-17 [1] CRAN (R 4.2.3)
##  httpuv         1.6.9      2023-02-14 [1] CRAN (R 4.2.3)
##  httr           1.4.5      2023-02-24 [1] CRAN (R 4.2.3)
##  insight        0.19.9     2024-03-15 [1] CRAN (R 4.2.3)
##  interactions * 1.1.5      2021-07-02 [1] CRAN (R 4.2.3)
##  iterators      1.0.14     2022-02-05 [1] CRAN (R 4.2.3)
##  jquerylib      0.1.4      2021-04-26 [1] CRAN (R 4.2.3)
##  jsonlite       1.8.4      2022-12-06 [1] CRAN (R 4.2.3)
##  jtools       * 2.2.1      2022-12-02 [1] CRAN (R 4.2.3)
##  kableExtra   * 1.4.0      2024-01-24 [1] CRAN (R 4.2.3)
##  knitr          1.42       2023-01-25 [1] CRAN (R 4.2.3)
##  labeling       0.4.2      2020-10-20 [1] CRAN (R 4.2.0)
##  later          1.3.0      2021-08-18 [1] CRAN (R 4.2.3)
##  lattice      * 0.21-8     2023-04-05 [1] CRAN (R 4.2.3)
##  lifecycle      1.0.3      2022-10-07 [1] CRAN (R 4.2.3)
##  lme4         * 1.1-32     2023-03-14 [1] CRAN (R 4.2.3)
##  lmtest         0.9-40     2022-03-21 [1] CRAN (R 4.2.3)
##  magrittr       2.0.3      2022-03-30 [1] CRAN (R 4.2.3)
##  MASS         * 7.3-58.3   2023-03-07 [1] CRAN (R 4.2.3)
##  Matrix       * 1.5-5      2023-04-05 [1] R-Forge (R 4.2.3)
##  memoise        2.0.1      2021-11-26 [1] CRAN (R 4.2.3)
##  mgcv           1.8-42     2023-03-02 [1] CRAN (R 4.2.3)
##  mime           0.12       2021-09-28 [1] CRAN (R 4.2.0)
##  miniUI         0.1.1.1    2018-05-18 [1] CRAN (R 4.2.3)
##  minqa          1.2.5      2022-10-19 [1] CRAN (R 4.2.3)
##  modeltools     0.2-23     2020-03-05 [1] CRAN (R 4.2.0)
##  multcomp       1.4-23     2023-03-09 [1] CRAN (R 4.2.3)
##  munsell        0.5.0      2018-06-12 [1] CRAN (R 4.2.3)
##  mvabund      * 4.2.1      2022-02-16 [1] CRAN (R 4.2.3)
##  mvtnorm        1.2-0      2023-04-05 [1] R-Forge (R 4.2.3)
##  nlme           3.1-162    2023-01-31 [1] CRAN (R 4.2.3)
##  nloptr         2.0.3      2022-05-26 [1] CRAN (R 4.2.3)
##  nnet           7.3-18     2022-09-28 [1] CRAN (R 4.2.3)
##  numDeriv       2022.9-1   2022-09-27 [1] R-Forge (R 4.2.1)
##  ordinal        2022.11-16 2022-11-16 [1] CRAN (R 4.2.3)
##  pander         0.6.5      2022-03-18 [1] CRAN (R 4.2.3)
##  performance  * 0.10.3     2023-04-07 [1] CRAN (R 4.2.3)
##  permute      * 0.9-7      2022-01-27 [1] CRAN (R 4.2.3)
##  pillar         1.9.0      2023-03-22 [1] CRAN (R 4.2.3)
##  pkgbuild       1.4.2.9000 2023-07-11 [1] Github (r-lib/pkgbuild@7048654)
##  pkgconfig      2.0.3      2019-09-22 [1] CRAN (R 4.2.3)
##  pkgload        1.3.2      2022-11-16 [1] CRAN (R 4.2.3)
##  prettyunits    1.1.1      2020-01-24 [1] CRAN (R 4.2.3)
##  processx       3.8.0      2022-10-26 [1] CRAN (R 4.2.3)
##  profvis        0.3.7      2020-11-02 [1] CRAN (R 4.2.3)
##  promises       1.2.0.1    2021-02-11 [1] CRAN (R 4.2.3)
##  ps             1.7.4      2023-04-02 [1] CRAN (R 4.2.3)
##  purrr          1.0.1      2023-01-10 [1] CRAN (R 4.2.3)
##  R6             2.5.1      2021-08-19 [1] CRAN (R 4.2.3)
##  RColorBrewer   1.1-3      2022-04-03 [1] CRAN (R 4.2.0)
##  Rcpp           1.0.10     2023-01-22 [1] CRAN (R 4.2.3)
##  readxl       * 1.4.2      2023-02-09 [1] CRAN (R 4.2.3)
##  remotes        2.4.2      2021-11-30 [1] CRAN (R 4.2.3)
##  rlang        * 1.1.0      2023-03-14 [1] CRAN (R 4.2.3)
##  rmarkdown      2.21       2023-03-26 [1] CRAN (R 4.2.3)
##  rstudioapi     0.14       2022-08-22 [1] CRAN (R 4.2.3)
##  Rttf2pt1       1.3.12     2023-01-22 [1] CRAN (R 4.2.2)
##  sandwich       3.1-0      2023-04-04 [1] R-Forge (R 4.2.3)
##  sass           0.4.5      2023-01-24 [1] CRAN (R 4.2.3)
##  scales         1.3.0      2023-11-28 [1] CRAN (R 4.2.3)
##  sessioninfo    1.2.2      2021-12-06 [1] CRAN (R 4.2.3)
##  shiny          1.7.4      2022-12-15 [1] CRAN (R 4.2.3)
##  statmod        1.5.0      2023-01-06 [1] CRAN (R 4.2.3)
##  stringi        1.7.12     2023-01-11 [1] CRAN (R 4.2.2)
##  stringr        1.5.0      2022-12-02 [1] CRAN (R 4.2.3)
##  survival       3.5-5      2023-03-12 [1] CRAN (R 4.2.3)
##  svglite        2.1.1      2023-01-10 [1] CRAN (R 4.2.3)
##  systemfonts    1.0.4      2022-02-11 [1] CRAN (R 4.2.3)
##  TH.data        1.1-2      2022-11-07 [1] R-Forge (R 4.2.3)
##  tibble         3.2.1      2023-03-20 [1] CRAN (R 4.2.3)
##  tidyselect     1.2.0      2022-10-10 [1] CRAN (R 4.2.3)
##  tweedie        2.3.5      2022-08-17 [1] CRAN (R 4.2.3)
##  ucminf         1.1-4.1    2022-09-29 [1] CRAN (R 4.2.1)
##  urlchecker     1.0.1      2021-11-30 [1] CRAN (R 4.2.3)
##  usethis      * 2.1.6      2022-05-25 [1] CRAN (R 4.2.3)
##  utf8           1.2.3      2023-01-31 [1] CRAN (R 4.2.3)
##  vctrs          0.6.1      2023-03-22 [1] CRAN (R 4.2.3)
##  vegan        * 2.6-4      2022-10-11 [1] CRAN (R 4.2.3)
##  viridisLite    0.4.1      2022-08-22 [1] CRAN (R 4.2.3)
##  withr          2.5.0      2022-03-03 [1] CRAN (R 4.2.3)
##  xfun           0.38       2023-03-24 [1] CRAN (R 4.2.3)
##  xml2           1.3.3      2021-11-30 [1] CRAN (R 4.2.3)
##  xtable         1.8-6      2020-06-19 [1] R-Forge (R 4.2.3)
##  yaml           2.3.7      2023-01-23 [1] CRAN (R 4.2.3)
##  zoo            1.8-11     2022-09-17 [1] CRAN (R 4.2.3)
## 
##  [1] C:/Users/Ron Chen/AppData/Local/R/win-library/4.2.3
##  [2] C:/Program Files/R/R-4.2.3/library
## 
## ──────────────────────────────────────────────────────────────────────────────