Full list
## $`LMX-Aff`
##
## Call:
## lm(formula = formula_list[[variable]], data = data)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.3693 -0.9770 -0.0019 1.0879 5.0111
##
## Coefficients: (1 not defined because of singularities)
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 4.372855 0.430375 10.161 < 2e-16 ***
## s_gender_textWoman 0.077297 0.229520 0.337 0.73655
## partgenderWoman -0.460707 0.216955 -2.124 0.03463 *
## pgender_textWoman -0.222279 0.223899 -0.993 0.32172
## Age -0.027428 0.009909 -2.768 0.00603 **
## race1,2 0.208918 0.859270 0.243 0.80809
## race1,2,3 2.976570 1.659593 1.794 0.07402 .
## race1,4 -0.678004 0.640889 -1.058 0.29105
## race1,5 -0.648301 0.757447 -0.856 0.39282
## race1,8 -4.619947 1.668637 -2.769 0.00602 **
## race10 0.027372 1.660593 0.016 0.98686
## race11 -0.342871 1.183880 -0.290 0.77233
## race2 1.599316 0.310110 5.157 4.89e-07 ***
## race2,3 1.718401 0.521982 3.292 0.00113 **
## race2,3,11 2.334377 1.672084 1.396 0.16385
## race3 -0.153560 0.387119 -0.397 0.69193
## race3,4 2.768433 1.676381 1.651 0.09983 .
## race4 -1.017617 0.520068 -1.957 0.05142 .
## race4,11 -0.381657 1.676464 -0.228 0.82009
## race4,5 -1.180842 1.673579 -0.706 0.48107
## race4,8 -1.489207 1.674217 -0.889 0.37454
## race5 0.115208 0.434519 0.265 0.79111
## race6 -0.057371 0.847838 -0.068 0.94610
## race7 -2.722556 1.183692 -2.300 0.02222 *
## race8 0.388709 1.697480 0.229 0.81905
## sentperp_1 -0.154646 0.060709 -2.547 0.01142 *
## sentconf_1 0.641576 0.061470 10.437 < 2e-16 ***
## ladder_partconf 0.003338 0.031454 0.106 0.91556
## ladder_partperp 0.041179 0.048196 0.854 0.39365
## ladder_confperp NA NA NA NA
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.643 on 267 degrees of freedom
## (6 observations deleted due to missingness)
## Multiple R-squared: 0.4196, Adjusted R-squared: 0.3587
## F-statistic: 6.893 on 28 and 267 DF, p-value: < 2.2e-16
##
##
## $Protection
##
## Call:
## lm(formula = formula_list[[variable]], data = data)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.688 -0.984 0.063 1.218 4.412
##
## Coefficients: (1 not defined because of singularities)
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 4.00209 0.46515 8.604 6.7e-16 ***
## s_gender_textWoman 0.05412 0.24806 0.218 0.82747
## partgenderWoman -0.34006 0.23448 -1.450 0.14816
## pgender_textWoman -0.07900 0.24199 -0.326 0.74433
## Age -0.01001 0.01071 -0.935 0.35073
## race1,2 0.28355 0.92869 0.305 0.76036
## race1,2,3 2.49549 1.79368 1.391 0.16530
## race1,4 -0.32987 0.69267 -0.476 0.63430
## race1,5 -1.26675 0.81864 -1.547 0.12296
## race1,8 -1.13927 1.80345 -0.632 0.52811
## race10 -1.46746 1.79476 -0.818 0.41429
## race11 -0.13529 1.27953 -0.106 0.91587
## race2 1.30839 0.33516 3.904 0.00012 ***
## race2,3 1.59636 0.56415 2.830 0.00501 **
## race2,3,11 1.47314 1.80718 0.815 0.41571
## race3 0.02071 0.41840 0.050 0.96056
## race3,4 2.97077 1.81182 1.640 0.10225
## race4 0.21250 0.56209 0.378 0.70569
## race4,11 -1.00587 1.81191 -0.555 0.57926
## race4,5 -1.72696 1.80879 -0.955 0.34056
## race4,8 -3.51708 1.80948 -1.944 0.05298 .
## race5 -0.13637 0.46963 -0.290 0.77175
## race6 -0.01280 0.91634 -0.014 0.98886
## race7 -2.34996 1.27933 -1.837 0.06734 .
## race8 1.63891 1.83463 0.893 0.37249
## sentperp_1 -0.19163 0.06561 -2.921 0.00379 **
## sentconf_1 0.61354 0.06644 9.235 < 2e-16 ***
## ladder_partconf -0.06704 0.03400 -1.972 0.04964 *
## ladder_partperp 0.08510 0.05209 1.634 0.10350
## ladder_confperp NA NA NA NA
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.776 on 267 degrees of freedom
## (6 observations deleted due to missingness)
## Multiple R-squared: 0.3713, Adjusted R-squared: 0.3054
## F-statistic: 5.632 on 28 and 267 DF, p-value: 4.987e-15
##
##
## $Comp
##
## Call:
## lm(formula = formula_list[[variable]], data = data)
##
## Residuals:
## Min 1Q Median 3Q Max
## -5.0782 -0.7063 0.1194 1.0289 3.4863
##
## Coefficients: (1 not defined because of singularities)
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 4.5576518 0.4041651 11.277 < 2e-16 ***
## s_gender_textWoman 0.1412449 0.2155426 0.655 0.5128
## partgenderWoman -0.3285572 0.2037423 -1.613 0.1080
## pgender_textWoman -0.0808420 0.2102631 -0.384 0.7009
## Age -0.0097531 0.0093051 -1.048 0.2955
## race1,2 -0.1143003 0.8069398 -0.142 0.8875
## race1,2,3 2.3901985 1.5585233 1.534 0.1263
## race1,4 -0.6936861 0.6018585 -1.153 0.2501
## race1,5 -0.5477053 0.7113186 -0.770 0.4420
## race1,8 -1.9190541 1.5670161 -1.225 0.2218
## race10 -0.9184384 1.5594622 -0.589 0.5564
## race11 -0.7396684 1.1117813 -0.665 0.5064
## race2 1.1742959 0.2912239 4.032 7.21e-05 ***
## race2,3 1.6176513 0.4901931 3.300 0.0011 **
## race2,3,11 1.5230644 1.5702538 0.970 0.3330
## race3 -0.2772344 0.3635436 -0.763 0.4464
## race3,4 2.7727769 1.5742892 1.761 0.0793 .
## race4 -0.1265374 0.4883957 -0.259 0.7958
## race4,11 -1.7240532 1.5743673 -1.095 0.2745
## race4,5 0.5862517 1.5716579 0.373 0.7094
## race4,8 -2.7678703 1.5722564 -1.760 0.0795 .
## race5 -0.2967149 0.4080569 -0.727 0.4678
## race6 -0.0668010 0.7962042 -0.084 0.9332
## race7 -2.8521732 1.1116046 -2.566 0.0108 *
## race8 0.2572757 1.5941033 0.161 0.8719
## sentperp_1 -0.0755031 0.0570122 -1.324 0.1865
## sentconf_1 0.4503935 0.0577265 7.802 1.38e-13 ***
## ladder_partconf -0.0025696 0.0295385 -0.087 0.9307
## ladder_partperp 0.0005255 0.0452609 0.012 0.9907
## ladder_confperp NA NA NA NA
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.543 on 267 degrees of freedom
## (6 observations deleted due to missingness)
## Multiple R-squared: 0.3256, Adjusted R-squared: 0.2549
## F-statistic: 4.604 on 28 and 267 DF, p-value: 1.104e-11
##
##
## $Warm
##
## Call:
## lm(formula = formula_list[[variable]], data = data)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.5462 -0.8529 0.0000 0.9794 3.5522
##
## Coefficients: (1 not defined because of singularities)
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 3.625268 0.414327 8.750 2.47e-16 ***
## s_gender_textWoman 0.137325 0.220962 0.621 0.53481
## partgenderWoman -0.635903 0.208865 -3.045 0.00256 **
## pgender_textWoman -0.040061 0.215550 -0.186 0.85270
## Age -0.010095 0.009539 -1.058 0.29088
## race1,2 -1.167791 0.827228 -1.412 0.15921
## race1,2,3 3.793910 1.597708 2.375 0.01828 *
## race1,4 0.320392 0.616991 0.519 0.60399
## race1,5 -1.161788 0.729203 -1.593 0.11229
## race1,8 -2.464853 1.606414 -1.534 0.12612
## race10 -0.614417 1.598671 -0.384 0.70104
## race11 -1.111599 1.139734 -0.975 0.33029
## race2 1.857733 0.298546 6.223 1.88e-09 ***
## race2,3 2.338036 0.502518 4.653 5.16e-06 ***
## race2,3,11 2.278419 1.609734 1.415 0.15812
## race3 0.331206 0.372684 0.889 0.37496
## race3,4 2.366672 1.613870 1.466 0.14370
## race4 -0.278622 0.500675 -0.556 0.57834
## race4,11 -0.462189 1.613950 -0.286 0.77482
## race4,5 -0.397593 1.611173 -0.247 0.80527
## race4,8 -0.232776 1.611786 -0.144 0.88528
## race5 0.443520 0.418316 1.060 0.28999
## race6 0.300871 0.816223 0.369 0.71271
## race7 -1.809060 1.139553 -1.588 0.11358
## race8 0.867055 1.634183 0.531 0.59616
## sentperp_1 -0.179517 0.058446 -3.072 0.00235 **
## sentconf_1 0.557338 0.059178 9.418 < 2e-16 ***
## ladder_partconf -0.018213 0.030281 -0.601 0.54804
## ladder_partperp 0.044898 0.046399 0.968 0.33409
## ladder_confperp NA NA NA NA
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.582 on 267 degrees of freedom
## (6 observations deleted due to missingness)
## Multiple R-squared: 0.4302, Adjusted R-squared: 0.3705
## F-statistic: 7.2 on 28 and 267 DF, p-value: < 2.2e-16
##
##
## $`Virt/Ad`
##
## Call:
## lm(formula = formula_list[[variable]], data = data)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.459 -1.125 0.000 1.145 5.100
##
## Coefficients: (1 not defined because of singularities)
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 3.93079 0.45838 8.575 8.14e-16 ***
## s_gender_textWoman -0.03454 0.24446 -0.141 0.887730
## partgenderWoman -0.27206 0.23107 -1.177 0.240086
## pgender_textWoman -0.07265 0.23847 -0.305 0.760878
## Age -0.02398 0.01055 -2.272 0.023883 *
## race1,2 0.31748 0.91519 0.347 0.728935
## race1,2,3 3.50308 1.76759 1.982 0.048523 *
## race1,4 -0.78461 0.68260 -1.149 0.251399
## race1,5 -1.09912 0.80674 -1.362 0.174212
## race1,8 -4.11607 1.77723 -2.316 0.021316 *
## race10 -0.57800 1.76866 -0.327 0.744075
## race11 -0.22191 1.26092 -0.176 0.860436
## race2 2.09180 0.33029 6.333 1.01e-09 ***
## race2,3 1.95043 0.55595 3.508 0.000529 ***
## race2,3,11 2.45521 1.78090 1.379 0.169161
## race3 0.36734 0.41231 0.891 0.373771
## race3,4 1.62522 1.78547 0.910 0.363515
## race4 0.05728 0.55391 0.103 0.917719
## race4,11 -0.70021 1.78556 -0.392 0.695259
## race4,5 0.21135 1.78249 0.119 0.905706
## race4,8 -3.00245 1.78317 -1.684 0.093394 .
## race5 0.02492 0.46280 0.054 0.957096
## race6 0.49920 0.90301 0.553 0.580851
## race7 -2.16982 1.26072 -1.721 0.086392 .
## race8 1.04895 1.80795 0.580 0.562275
## sentperp_1 -0.17484 0.06466 -2.704 0.007292 **
## sentconf_1 0.51597 0.06547 7.881 8.28e-14 ***
## ladder_partconf -0.06350 0.03350 -1.896 0.059105 .
## ladder_partperp 0.08036 0.05133 1.566 0.118637
## ladder_confperp NA NA NA NA
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.75 on 267 degrees of freedom
## (6 observations deleted due to missingness)
## Multiple R-squared: 0.3663, Adjusted R-squared: 0.2998
## F-statistic: 5.512 on 28 and 267 DF, p-value: 1.21e-14
##
##
## $StatusConf
##
## Call:
## lm(formula = formula_list[[variable]], data = data)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.3862 -1.3006 0.0505 1.3000 4.7833
##
## Coefficients: (1 not defined because of singularities)
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 3.82057 0.46841 8.156 1.36e-14 ***
## s_gender_textWoman -0.03633 0.24981 -0.145 0.88447
## partgenderWoman -0.33713 0.23613 -1.428 0.15453
## pgender_textWoman -0.05140 0.24369 -0.211 0.83312
## Age -0.01955 0.01078 -1.813 0.07098 .
## race1,2 0.56015 0.93521 0.599 0.54971
## race1,2,3 3.06446 1.80627 1.697 0.09094 .
## race1,4 -1.43292 0.69753 -2.054 0.04092 *
## race1,5 -1.00389 0.82439 -1.218 0.22440
## race1,8 -4.44801 1.81611 -2.449 0.01496 *
## race10 -0.70323 1.80736 -0.389 0.69752
## race11 0.13337 1.28851 0.104 0.91764
## race2 1.85624 0.33752 5.500 8.90e-08 ***
## race2,3 1.61181 0.56812 2.837 0.00490 **
## race2,3,11 2.28625 1.81986 1.256 0.21011
## race3 0.19680 0.42133 0.467 0.64082
## race3,4 2.73614 1.82454 1.500 0.13489
## race4 -0.68472 0.56603 -1.210 0.22747
## race4,11 -0.54578 1.82463 -0.299 0.76508
## race4,5 -1.53191 1.82149 -0.841 0.40109
## race4,8 -2.39183 1.82218 -1.313 0.19044
## race5 0.04042 0.47292 0.085 0.93195
## race6 0.58585 0.92277 0.635 0.52605
## race7 -2.98700 1.28831 -2.319 0.02118 *
## race8 1.61610 1.84750 0.875 0.38250
## sentperp_1 -0.18917 0.06607 -2.863 0.00453 **
## sentconf_1 0.58091 0.06690 8.683 3.90e-16 ***
## ladder_partconf -0.06531 0.03423 -1.908 0.05751 .
## ladder_partperp 0.09253 0.05246 1.764 0.07887 .
## ladder_confperp NA NA NA NA
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.788 on 267 degrees of freedom
## (6 observations deleted due to missingness)
## Multiple R-squared: 0.3826, Adjusted R-squared: 0.3179
## F-statistic: 5.909 on 28 and 267 DF, p-value: 6.492e-16
##
##
## $FNVPre
##
## Call:
## lm(formula = formula_list[[variable]], data = data)
##
## Residuals:
## Min 1Q Median 3Q Max
## -2.4344 -0.5787 0.0000 0.5193 2.2703
##
## Coefficients: (1 not defined because of singularities)
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 2.379040 0.220576 10.786 < 2e-16 ***
## s_gender_textWoman 0.001270 0.117634 0.011 0.991391
## partgenderWoman -0.171513 0.111194 -1.542 0.124144
## pgender_textWoman -0.083289 0.114752 -0.726 0.468586
## Age -0.004843 0.005078 -0.954 0.341085
## race1,2 -0.233495 0.440392 -0.530 0.596416
## race1,2,3 2.342134 0.850574 2.754 0.006299 **
## race1,4 -0.056426 0.328468 -0.172 0.863736
## race1,5 -0.134609 0.388206 -0.347 0.729055
## race1,8 -1.614758 0.855209 -1.888 0.060091 .
## race10 -0.264580 0.851086 -0.311 0.756139
## race11 -0.464817 0.606761 -0.766 0.444316
## race2 1.216594 0.158937 7.655 3.56e-13 ***
## race2,3 0.947214 0.267526 3.541 0.000471 ***
## race2,3,11 1.515641 0.856976 1.769 0.078104 .
## race3 0.084442 0.198406 0.426 0.670743
## race3,4 1.296913 0.859178 1.509 0.132358
## race4 -0.169966 0.266545 -0.638 0.524238
## race4,11 -0.059136 0.859221 -0.069 0.945181
## race4,5 -0.733961 0.857742 -0.856 0.392937
## race4,8 -0.923773 0.858069 -1.077 0.282643
## race5 -0.046813 0.222700 -0.210 0.833668
## race6 0.048232 0.434533 0.111 0.911702
## race7 -0.729449 0.606665 -1.202 0.230277
## race8 0.381219 0.869992 0.438 0.661605
## sentperp_1 -0.017294 0.031115 -0.556 0.578799
## sentconf_1 0.226017 0.031505 7.174 7.18e-12 ***
## ladder_partconf -0.018001 0.016121 -1.117 0.265151
## ladder_partperp 0.029379 0.024701 1.189 0.235348
## ladder_confperp NA NA NA NA
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.8422 on 267 degrees of freedom
## (6 observations deleted due to missingness)
## Multiple R-squared: 0.4058, Adjusted R-squared: 0.3435
## F-statistic: 6.513 on 28 and 267 DF, p-value: < 2.2e-16
##
##
## $FNVPro
##
## Call:
## lm(formula = formula_list[[variable]], data = data)
##
## Residuals:
## Min 1Q Median 3Q Max
## -2.1315 -0.5746 -0.0026 0.4423 3.3942
##
## Coefficients: (1 not defined because of singularities)
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 2.459582 0.240518 10.226 < 2e-16 ***
## s_gender_textWoman -0.112560 0.128269 -0.878 0.3810
## partgenderWoman 0.078445 0.121247 0.647 0.5182
## pgender_textWoman -0.160933 0.125127 -1.286 0.1995
## Age 0.004219 0.005537 0.762 0.4468
## race1,2 -0.193386 0.480208 -0.403 0.6875
## race1,2,3 -1.241416 0.927474 -1.338 0.1819
## race1,4 0.011025 0.358165 0.031 0.9755
## race1,5 0.200541 0.423304 0.474 0.6361
## race1,8 0.396686 0.932528 0.425 0.6709
## race10 -0.560130 0.928032 -0.604 0.5466
## race11 -0.634473 0.661618 -0.959 0.3384
## race2 0.021431 0.173307 0.124 0.9017
## race2,3 -0.088427 0.291713 -0.303 0.7620
## race2,3,11 0.805181 0.934454 0.862 0.3896
## race3 0.472753 0.216344 2.185 0.0297 *
## race3,4 -1.131700 0.936856 -1.208 0.2281
## race4 -0.157693 0.290643 -0.543 0.5879
## race4,11 1.350378 0.936902 1.441 0.1507
## race4,5 0.475558 0.935290 0.508 0.6116
## race4,8 -0.447397 0.935646 -0.478 0.6329
## race5 -0.410843 0.242834 -1.692 0.0918 .
## race6 0.145760 0.473819 0.308 0.7586
## race7 -0.646641 0.661513 -0.978 0.3292
## race8 -0.714277 0.948647 -0.753 0.4521
## sentperp_1 0.181840 0.033928 5.360 1.80e-07 ***
## sentconf_1 -0.230862 0.034353 -6.720 1.09e-10 ***
## ladder_partconf 0.001496 0.017578 0.085 0.9322
## ladder_partperp 0.001928 0.026935 0.072 0.9430
## ladder_confperp NA NA NA NA
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.9183 on 267 degrees of freedom
## (6 observations deleted due to missingness)
## Multiple R-squared: 0.2804, Adjusted R-squared: 0.2049
## F-statistic: 3.715 on 28 and 267 DF, p-value: 9.744e-09
##
##
## $MNVPre
##
## Call:
## lm(formula = formula_list[[variable]], data = data)
##
## Residuals:
## Min 1Q Median 3Q Max
## -2.00022 -0.45309 0.01628 0.50060 2.15729
##
## Coefficients: (1 not defined because of singularities)
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 2.849258 0.219946 12.954 < 2e-16 ***
## s_gender_textWoman 0.053266 0.117298 0.454 0.6501
## partgenderWoman -0.181503 0.110876 -1.637 0.1028
## pgender_textWoman -0.143143 0.114425 -1.251 0.2120
## Age -0.001143 0.005064 -0.226 0.8217
## race1,2 0.163270 0.439136 0.372 0.7103
## race1,2,3 0.360319 0.848147 0.425 0.6713
## race1,4 -0.664303 0.327531 -2.028 0.0435 *
## race1,5 -0.055697 0.387099 -0.144 0.8857
## race1,8 -0.145521 0.852769 -0.171 0.8646
## race10 0.409357 0.848658 0.482 0.6299
## race11 -0.867592 0.605030 -1.434 0.1528
## race2 0.656057 0.158484 4.140 4.67e-05 ***
## race2,3 0.358747 0.266763 1.345 0.1798
## race2,3,11 0.294534 0.854531 0.345 0.7306
## race3 -0.007911 0.197840 -0.040 0.9681
## race3,4 1.284950 0.856727 1.500 0.1348
## race4 0.160555 0.265785 0.604 0.5463
## race4,11 0.353826 0.856769 0.413 0.6800
## race4,5 0.713894 0.855295 0.835 0.4046
## race4,8 -1.863207 0.855621 -2.178 0.0303 *
## race5 -0.350708 0.222064 -1.579 0.1154
## race6 -0.577723 0.433294 -1.333 0.1836
## race7 -1.401963 0.604934 -2.318 0.0212 *
## race8 0.290089 0.867510 0.334 0.7383
## sentperp_1 -0.001646 0.031026 -0.053 0.9577
## sentconf_1 0.127319 0.031415 4.053 6.64e-05 ***
## ladder_partconf -0.020594 0.016075 -1.281 0.2013
## ladder_partperp 0.004572 0.024631 0.186 0.8529
## ladder_confperp NA NA NA NA
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.8398 on 267 degrees of freedom
## (6 observations deleted due to missingness)
## Multiple R-squared: 0.2378, Adjusted R-squared: 0.1579
## F-statistic: 2.975 on 28 and 267 DF, p-value: 2.655e-06
##
##
## $MNVPro
##
## Call:
## lm(formula = formula_list[[variable]], data = data)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.62589 -0.44488 -0.02948 0.36082 2.49857
##
## Coefficients: (1 not defined because of singularities)
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 2.157076 0.182344 11.830 < 2e-16 ***
## s_gender_textWoman -0.040983 0.097347 -0.421 0.674094
## partgenderWoman -0.037511 0.091965 -0.408 0.683692
## pgender_textWoman -0.086787 0.094977 -0.914 0.361664
## Age -0.001541 0.004201 -0.367 0.714014
## race1,2 -0.143210 0.364210 -0.393 0.694481
## race1,2,3 -0.548503 0.703206 -0.780 0.436082
## race1,4 0.092162 0.271524 0.339 0.734557
## race1,5 0.415029 0.320934 1.293 0.197067
## race1,8 0.192486 0.706976 0.272 0.785628
## race10 0.040616 0.703543 0.058 0.954007
## race11 -0.522725 0.501633 -1.042 0.298336
## race2 0.516823 0.133829 3.862 0.000141 ***
## race2,3 0.453501 0.221232 2.050 0.041355 *
## race2,3,11 0.406635 0.708624 0.574 0.566563
## race3 0.393825 0.164079 2.400 0.017073 *
## race3,4 -0.843131 0.710303 -1.187 0.236286
## race4 -0.393491 0.220346 -1.786 0.075273 .
## race4,11 0.721539 0.710413 1.016 0.310714
## race4,5 -0.483302 0.709043 -0.682 0.496069
## race4,8 0.270333 0.709346 0.381 0.703432
## race5 -0.107799 0.184122 -0.585 0.558724
## race6 -0.267631 0.359201 -0.745 0.456886
## race7 0.945670 0.501577 1.885 0.060466 .
## race8 -0.555116 0.719312 -0.772 0.440958
## sentperp_1 0.087006 0.025833 3.368 0.000869 ***
## sentconf_1 -0.099401 0.026215 -3.792 0.000185 ***
## ladder_partconf -0.008619 0.013326 -0.647 0.518327
## ladder_partperp -0.005418 0.020424 -0.265 0.790985
## ladder_confperp NA NA NA NA
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.6962 on 266 degrees of freedom
## (7 observations deleted due to missingness)
## Multiple R-squared: 0.2322, Adjusted R-squared: 0.1513
## F-statistic: 2.872 on 28 and 266 DF, p-value: 5.766e-06
##
##
## $RespSeverity
##
## Call:
## lm(formula = formula_list[[variable]], data = data)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.9060 -0.7851 0.0034 0.9691 3.0739
##
## Coefficients: (1 not defined because of singularities)
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.630224 0.393456 1.602 0.1104
## s_gender_textWoman -0.291741 0.209831 -1.390 0.1656
## partgenderWoman 0.005772 0.198344 0.029 0.9768
## pgender_textWoman 0.222206 0.204692 1.086 0.2787
## Age -0.016558 0.009059 -1.828 0.0687 .
## race1,2 0.203313 0.785558 0.259 0.7960
## race1,2,3 0.151980 1.517226 0.100 0.9203
## race1,4 -0.639251 0.585911 -1.091 0.2762
## race1,5 1.117544 0.692470 1.614 0.1077
## race1,8 1.148369 1.525494 0.753 0.4522
## race10 -0.240542 1.518140 -0.158 0.8742
## race11 -0.959412 1.082322 -0.886 0.3762
## race2 0.536201 0.283507 1.891 0.0597 .
## race2,3 1.197657 0.477204 2.510 0.0127 *
## race2,3,11 3.031854 1.528646 1.983 0.0484 *
## race3 0.425764 0.353910 1.203 0.2300
## race3,4 -0.223074 1.532574 -0.146 0.8844
## race4 0.076803 0.475454 0.162 0.8718
## race4,11 3.486228 1.532650 2.275 0.0237 *
## race4,5 -0.972799 1.530013 -0.636 0.5254
## race4,8 -3.247459 1.530595 -2.122 0.0348 *
## race5 -0.265232 0.397244 -0.668 0.5049
## race6 -1.111550 0.775107 -1.434 0.1527
## race7 -2.787041 1.082150 -2.575 0.0105 *
## race8 0.572421 1.551863 0.369 0.7125
## sentperp_1 0.090684 0.055501 1.634 0.1035
## sentconf_1 0.068131 0.056197 1.212 0.2264
## ladder_partconf -0.008452 0.028756 -0.294 0.7690
## ladder_partperp -0.007374 0.044062 -0.167 0.8672
## ladder_confperp NA NA NA NA
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.502 on 267 degrees of freedom
## (6 observations deleted due to missingness)
## Multiple R-squared: 0.1652, Adjusted R-squared: 0.07761
## F-statistic: 1.886 on 28 and 267 DF, p-value: 0.005704
##
##
## $MoralGood
##
## Call:
## lm(formula = formula_list[[variable]], data = data)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.8580 -1.0995 0.1691 1.1953 3.8428
##
## Coefficients: (1 not defined because of singularities)
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 4.557494 0.427595 10.658 < 2e-16 ***
## s_gender_textWoman 0.050651 0.228038 0.222 0.82439
## partgenderWoman -0.242797 0.215554 -1.126 0.26101
## pgender_textWoman 0.081048 0.222452 0.364 0.71589
## Age -0.016570 0.009845 -1.683 0.09350 .
## race1,2 0.401187 0.853719 0.470 0.63879
## race1,2,3 2.969026 1.648874 1.801 0.07289 .
## race1,4 -0.044260 0.636749 -0.070 0.94464
## race1,5 -1.230542 0.752555 -1.635 0.10320
## race1,8 -1.824554 1.657859 -1.101 0.27208
## race10 -1.162926 1.649867 -0.705 0.48151
## race11 -0.126639 1.176233 -0.108 0.91434
## race2 1.505404 0.308107 4.886 1.78e-06 ***
## race2,3 1.634670 0.518610 3.152 0.00181 **
## race2,3,11 1.923893 1.661284 1.158 0.24787
## race3 0.070299 0.384619 0.183 0.85511
## race3,4 2.603279 1.665553 1.563 0.11923
## race4 0.119812 0.516709 0.232 0.81681
## race4,11 -1.721205 1.665636 -1.033 0.30237
## race4,5 -0.373055 1.662770 -0.224 0.82265
## race4,8 -1.986725 1.663403 -1.194 0.23339
## race5 0.126099 0.431713 0.292 0.77044
## race6 1.523572 0.842362 1.809 0.07162 .
## race7 -1.745190 1.176046 -1.484 0.13900
## race8 0.963685 1.686516 0.571 0.56821
## sentperp_1 -0.160286 0.060317 -2.657 0.00835 **
## sentconf_1 0.476035 0.061073 7.795 1.45e-13 ***
## ladder_partconf -0.030106 0.031251 -0.963 0.33623
## ladder_partperp 0.040520 0.047885 0.846 0.39820
## ladder_confperp NA NA NA NA
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.633 on 267 degrees of freedom
## (6 observations deleted due to missingness)
## Multiple R-squared: 0.3246, Adjusted R-squared: 0.2538
## F-statistic: 4.583 on 28 and 267 DF, p-value: 1.291e-11