library(tidyverse)
library(tidyr)
setwd("C:/Users/Truly/OneDrive/Documents/Data work")
<- read_csv("500CitiesLocalHealthIndicators.cdc.csv") cities500
Healthy Cities GIS Assignment
Load the libraries and set the working directory
The GeoLocation variable has (lat, long) format
Split GeoLocation (lat, long) into two columns: lat and long
<- tidyr::extract(cities500, GeoLocation, c('lat', 'long'),
latlong regex = ',?\\s*\\((\\d+\\.\\d+).*(-?\\d+\\.\\d+)\\)')
head(latlong)
# A tibble: 6 × 25
Year StateAbbr StateDesc CityName GeographicLevel DataSource Category
<dbl> <chr> <chr> <chr> <chr> <chr> <chr>
1 2017 CA California Hawthorne Census Tract BRFSS Health Outcom…
2 2017 CA California Hawthorne City BRFSS Unhealthy Beh…
3 2017 CA California Hayward City BRFSS Health Outcom…
4 2017 CA California Hayward City BRFSS Unhealthy Beh…
5 2017 CA California Hemet City BRFSS Prevention
6 2017 CA California Indio Census Tract BRFSS Health Outcom…
# ℹ 18 more variables: UniqueID <chr>, Measure <chr>, Data_Value_Unit <chr>,
# DataValueTypeID <chr>, Data_Value_Type <chr>, Data_Value <dbl>,
# Low_Confidence_Limit <dbl>, High_Confidence_Limit <dbl>,
# Data_Value_Footnote_Symbol <chr>, Data_Value_Footnote <chr>,
# PopulationCount <dbl>, lat <chr>, long <chr>, CategoryID <chr>,
# MeasureId <chr>, CityFIPS <dbl>, TractFIPS <dbl>, Short_Question_Text <chr>
Filter the dataset
Remove the StateDesc that includes the United Sates, select Prevention as the category (of interest), filter for only measuring crude prevalence and select only 2017.
<- latlong |>
latlong_clean filter(StateDesc != "United States") |>
filter(Category == "Prevention") |>
filter(Data_Value_Type == "Crude prevalence") |>
filter(Year == 2017)
head(latlong_clean)
# A tibble: 6 × 25
Year StateAbbr StateDesc CityName GeographicLevel DataSource Category
<dbl> <chr> <chr> <chr> <chr> <chr> <chr>
1 2017 AL Alabama Montgomery City BRFSS Prevention
2 2017 CA California Concord City BRFSS Prevention
3 2017 CA California Concord City BRFSS Prevention
4 2017 CA California Fontana City BRFSS Prevention
5 2017 CA California Richmond Census Tract BRFSS Prevention
6 2017 FL Florida Davie Census Tract BRFSS Prevention
# ℹ 18 more variables: UniqueID <chr>, Measure <chr>, Data_Value_Unit <chr>,
# DataValueTypeID <chr>, Data_Value_Type <chr>, Data_Value <dbl>,
# Low_Confidence_Limit <dbl>, High_Confidence_Limit <dbl>,
# Data_Value_Footnote_Symbol <chr>, Data_Value_Footnote <chr>,
# PopulationCount <dbl>, lat <chr>, long <chr>, CategoryID <chr>,
# MeasureId <chr>, CityFIPS <dbl>, TractFIPS <dbl>, Short_Question_Text <chr>
What variables are included? (can any of them be removed?)
names(latlong_clean)
[1] "Year" "StateAbbr"
[3] "StateDesc" "CityName"
[5] "GeographicLevel" "DataSource"
[7] "Category" "UniqueID"
[9] "Measure" "Data_Value_Unit"
[11] "DataValueTypeID" "Data_Value_Type"
[13] "Data_Value" "Low_Confidence_Limit"
[15] "High_Confidence_Limit" "Data_Value_Footnote_Symbol"
[17] "Data_Value_Footnote" "PopulationCount"
[19] "lat" "long"
[21] "CategoryID" "MeasureId"
[23] "CityFIPS" "TractFIPS"
[25] "Short_Question_Text"
Remove the variables that will not be used in the assignment
<- latlong_clean |>
prevention select(-DataSource,-Data_Value_Unit, -DataValueTypeID, -Low_Confidence_Limit, -High_Confidence_Limit, -Data_Value_Footnote_Symbol, -Data_Value_Footnote)
head(prevention)
# A tibble: 6 × 18
Year StateAbbr StateDesc CityName GeographicLevel Category UniqueID Measure
<dbl> <chr> <chr> <chr> <chr> <chr> <chr> <chr>
1 2017 AL Alabama Montgome… City Prevent… 151000 Choles…
2 2017 CA California Concord City Prevent… 616000 Visits…
3 2017 CA California Concord City Prevent… 616000 Choles…
4 2017 CA California Fontana City Prevent… 624680 Visits…
5 2017 CA California Richmond Census Tract Prevent… 0660620… Choles…
6 2017 FL Florida Davie Census Tract Prevent… 1216475… Choles…
# ℹ 10 more variables: Data_Value_Type <chr>, Data_Value <dbl>,
# PopulationCount <dbl>, lat <chr>, long <chr>, CategoryID <chr>,
# MeasureId <chr>, CityFIPS <dbl>, TractFIPS <dbl>, Short_Question_Text <chr>
The new dataset “Prevention” is a manageable dataset now.
For your assignment, work with the cleaned “Prevention” dataset
1. Once you run the above code, filter this dataset one more time for any particular subset.
Filter chunk here
<- prevention |>
charleston_data filter(CityName == "Charleston")
head(charleston_data)
# A tibble: 6 × 18
Year StateAbbr StateDesc CityName GeographicLevel Category UniqueID Measure
<dbl> <chr> <chr> <chr> <chr> <chr> <chr> <chr>
1 2017 SC South Caro… Charles… City Prevent… 4513330 "Visit…
2 2017 SC South Caro… Charles… Census Tract Prevent… 4513330… "Curre…
3 2017 SC South Caro… Charles… Census Tract Prevent… 4513330… "Visit…
4 2017 SC South Caro… Charles… Census Tract Prevent… 4513330… "Visit…
5 2017 SC South Caro… Charles… Census Tract Prevent… 4513330… "Curre…
6 2017 SC South Caro… Charles… Census Tract Prevent… 4513330… "Curre…
# ℹ 10 more variables: Data_Value_Type <chr>, Data_Value <dbl>,
# PopulationCount <dbl>, lat <chr>, long <chr>, CategoryID <chr>,
# MeasureId <chr>, CityFIPS <dbl>, TractFIPS <dbl>, Short_Question_Text <chr>
unique(charleston_data$Measure)
[1] "Visits to doctor for routine checkup within the past Year among adults aged >=18 Years"
[2] "Current lack of health insurance among adults aged 18\x9664 Years"
[3] "Taking medicine for high blood pressure control among adults aged >=18 Years with high blood pressure"
[4] "Cholesterol screening among adults aged >=18 Years"
<- charleston_data %>%
screen filter(grepl("screening", Measure))
Warning: There were 75 warnings in `filter()`.
The first warning was:
ℹ In argument: `grepl("screening", Measure)`.
Caused by warning in `grepl()`:
! unable to translate 'Current lack of health insurance among adults aged 18<96>64 Years' to a wide string
ℹ Run `dplyr::last_dplyr_warnings()` to see the 74 remaining warnings.
head(screen)
# A tibble: 6 × 18
Year StateAbbr StateDesc CityName GeographicLevel Category UniqueID Measure
<dbl> <chr> <chr> <chr> <chr> <chr> <chr> <chr>
1 2017 SC South Caro… Charles… Census Tract Prevent… 4513330… Choles…
2 2017 SC South Caro… Charles… Census Tract Prevent… 4513330… Choles…
3 2017 SC South Caro… Charles… Census Tract Prevent… 4513330… Choles…
4 2017 SC South Caro… Charles… Census Tract Prevent… 4513330… Choles…
5 2017 SC South Caro… Charles… Census Tract Prevent… 4513330… Choles…
6 2017 SC South Caro… Charles… Census Tract Prevent… 4513330… Choles…
# ℹ 10 more variables: Data_Value_Type <chr>, Data_Value <dbl>,
# PopulationCount <dbl>, lat <chr>, long <chr>, CategoryID <chr>,
# MeasureId <chr>, CityFIPS <dbl>, TractFIPS <dbl>, Short_Question_Text <chr>
2. Based on the GIS tutorial (Japan earthquakes), create one plot about something in your subsetted dataset.
First plot chunk here
I made the first plot, but it had two crazy outliers that needed to be removed
<- screen %>%
plot1 ggplot(aes(x = Data_Value, y = PopulationCount)) +
geom_point() +
labs(title = "Cholesterol Screening in Charleston", x = "Data Value", y = "Population Count")
print(plot1)
Warning: Removed 2 rows containing missing values or values outside the scale range
(`geom_point()`).
Removed the oultiers
<- screen %>%
plot2 filter(PopulationCount < 50000) %>%
ggplot(aes(x = Data_Value, y = PopulationCount)) +
geom_point() +
labs(title = "Cholesterol Screening in Charleston", x = "Data Value", y = "Population Count")
plot2
Warning: Removed 2 rows containing missing values or values outside the scale range
(`geom_point()`).
3. Now create a map of your subsetted dataset.
First map chunk here
library(leaflet)
Warning: package 'leaflet' was built under R version 4.3.3
leaflet(screen) %>%
addTiles() %>%
addCircleMarkers(~-81, ~33, label = ~paste(TractFIPS, Data_Value), popup = ~TractFIPS)
4. Refine your map to include a mousover tooltip
Refined map chunk here
library(leaflet)
leaflet(screen) %>%
addTiles() %>%
addCircleMarkers(~-81, ~33, label = ~paste(TractFIPS, Data_Value), popup = ~TractFIPS)
5. Write a paragraph
In a paragraph, describe the plots you created and what they show.