Healthy Cities GIS Assignment

Author

R Saidi

Load the libraries and set the working directory

library(tidyverse)
library(tidyr)
library(dplyr)
cities500 <- read_csv('C:/Users/omyue/OneDrive/Desktop/Montgomery College/Spring 24/Data 101/datasets/500CitiesLocalHealthIndicators.cdc.csv')

The GeoLocation variable has (lat, long) format

Split GeoLocation (lat, long) into two columns: lat and long

latlong <- cities500 |>
  mutate(GeoLocation = str_replace_all(GeoLocation, "[()]", ""))|>
  separate(GeoLocation, into = c("lat","long"), sep = ",", convert = TRUE)
head(latlong)
# A tibble: 6 × 25
   Year StateAbbr StateDesc  CityName  GeographicLevel DataSource Category      
  <dbl> <chr>     <chr>      <chr>     <chr>           <chr>      <chr>         
1  2017 CA        California Hawthorne Census Tract    BRFSS      Health Outcom…
2  2017 CA        California Hawthorne City            BRFSS      Unhealthy Beh…
3  2017 CA        California Hayward   City            BRFSS      Health Outcom…
4  2017 CA        California Hayward   City            BRFSS      Unhealthy Beh…
5  2017 CA        California Hemet     City            BRFSS      Prevention    
6  2017 CA        California Indio     Census Tract    BRFSS      Health Outcom…
# ℹ 18 more variables: UniqueID <chr>, Measure <chr>, Data_Value_Unit <chr>,
#   DataValueTypeID <chr>, Data_Value_Type <chr>, Data_Value <dbl>,
#   Low_Confidence_Limit <dbl>, High_Confidence_Limit <dbl>,
#   Data_Value_Footnote_Symbol <chr>, Data_Value_Footnote <chr>,
#   PopulationCount <dbl>, lat <dbl>, long <dbl>, CategoryID <chr>,
#   MeasureId <chr>, CityFIPS <dbl>, TractFIPS <dbl>, Short_Question_Text <chr>

Filter the dataset

Remove the StateDesc that includes the United Sates, select Prevention as the category (of interest), filter for only measuring crude prevalence and select only 2017.

latlong_clean <- latlong |>
  filter(StateDesc != "United States") |>
  filter(Category == "Prevention") |>
  filter(Data_Value_Type == "Crude prevalence") |>
  filter(Year == 2017)
head(latlong_clean)
# A tibble: 6 × 25
   Year StateAbbr StateDesc  CityName   GeographicLevel DataSource Category  
  <dbl> <chr>     <chr>      <chr>      <chr>           <chr>      <chr>     
1  2017 AL        Alabama    Montgomery City            BRFSS      Prevention
2  2017 CA        California Concord    City            BRFSS      Prevention
3  2017 CA        California Concord    City            BRFSS      Prevention
4  2017 CA        California Fontana    City            BRFSS      Prevention
5  2017 CA        California Richmond   Census Tract    BRFSS      Prevention
6  2017 FL        Florida    Davie      Census Tract    BRFSS      Prevention
# ℹ 18 more variables: UniqueID <chr>, Measure <chr>, Data_Value_Unit <chr>,
#   DataValueTypeID <chr>, Data_Value_Type <chr>, Data_Value <dbl>,
#   Low_Confidence_Limit <dbl>, High_Confidence_Limit <dbl>,
#   Data_Value_Footnote_Symbol <chr>, Data_Value_Footnote <chr>,
#   PopulationCount <dbl>, lat <dbl>, long <dbl>, CategoryID <chr>,
#   MeasureId <chr>, CityFIPS <dbl>, TractFIPS <dbl>, Short_Question_Text <chr>

What variables are included? (can any of them be removed?)

names(latlong_clean)
 [1] "Year"                       "StateAbbr"                 
 [3] "StateDesc"                  "CityName"                  
 [5] "GeographicLevel"            "DataSource"                
 [7] "Category"                   "UniqueID"                  
 [9] "Measure"                    "Data_Value_Unit"           
[11] "DataValueTypeID"            "Data_Value_Type"           
[13] "Data_Value"                 "Low_Confidence_Limit"      
[15] "High_Confidence_Limit"      "Data_Value_Footnote_Symbol"
[17] "Data_Value_Footnote"        "PopulationCount"           
[19] "lat"                        "long"                      
[21] "CategoryID"                 "MeasureId"                 
[23] "CityFIPS"                   "TractFIPS"                 
[25] "Short_Question_Text"       

Remove the variables that will not be used in the assignment

prevention <- latlong_clean |>
  select(-DataSource,-Data_Value_Unit, -DataValueTypeID, -Low_Confidence_Limit, -High_Confidence_Limit, -Data_Value_Footnote_Symbol, -Data_Value_Footnote)
head(prevention)
# A tibble: 6 × 18
   Year StateAbbr StateDesc  CityName  GeographicLevel Category UniqueID Measure
  <dbl> <chr>     <chr>      <chr>     <chr>           <chr>    <chr>    <chr>  
1  2017 AL        Alabama    Montgome… City            Prevent… 151000   Choles…
2  2017 CA        California Concord   City            Prevent… 616000   Visits…
3  2017 CA        California Concord   City            Prevent… 616000   Choles…
4  2017 CA        California Fontana   City            Prevent… 624680   Visits…
5  2017 CA        California Richmond  Census Tract    Prevent… 0660620… Choles…
6  2017 FL        Florida    Davie     Census Tract    Prevent… 1216475… Choles…
# ℹ 10 more variables: Data_Value_Type <chr>, Data_Value <dbl>,
#   PopulationCount <dbl>, lat <dbl>, long <dbl>, CategoryID <chr>,
#   MeasureId <chr>, CityFIPS <dbl>, TractFIPS <dbl>, Short_Question_Text <chr>
dmv <- prevention |>
  filter(StateAbbr== c("MD", "VA", "DC"))
Warning: There was 1 warning in `filter()`.
ℹ In argument: `StateAbbr == c("MD", "VA", "DC")`.
Caused by warning in `StateAbbr == c("MD", "VA", "DC")`:
! longer object length is not a multiple of shorter object length
head(dmv)
# A tibble: 6 × 18
   Year StateAbbr StateDesc   CityName GeographicLevel Category UniqueID Measure
  <dbl> <chr>     <chr>       <chr>    <chr>           <chr>    <chr>    <chr>  
1  2017 VA        Virginia    Norfolk  Census Tract    Prevent… 5157000… "Visit…
2  2017 VA        Virginia    Virgini… Census Tract    Prevent… 5182000… "Visit…
3  2017 DC        District o… Washing… Census Tract    Prevent… 1150000… "Visit…
4  2017 DC        District o… Washing… Census Tract    Prevent… 1150000… "Curre…
5  2017 DC        District o… Washing… Census Tract    Prevent… 1150000… "Takin…
6  2017 DC        District o… Washing… Census Tract    Prevent… 1150000… "Chole…
# ℹ 10 more variables: Data_Value_Type <chr>, Data_Value <dbl>,
#   PopulationCount <dbl>, lat <dbl>, long <dbl>, CategoryID <chr>,
#   MeasureId <chr>, CityFIPS <dbl>, TractFIPS <dbl>, Short_Question_Text <chr>

The new dataset “Prevention” is a manageable dataset now.

For your assignment, work with the cleaned “Prevention” dataset

1. Once you run the above code, filter this dataset one more time for any particular subset.

Filter chunk here

access2_dmv <- dmv |>
  filter(MeasureId=="ACCESS2") 

dmv2 <- access2_dmv |>
  group_by(CityName) |>
  mutate(PopulationCount = (sum(PopulationCount))/10^2)

2. Based on the GIS tutorial (Japan earthquakes), create one plot about something in your subsetted dataset.

First plot chunk here

library(ggplot2)
plot <- ggplot(dmv2, aes(x = CityName, y = PopulationCount)) +
  geom_bar(stat = "identity", fill = "skyblue") +
  labs(title = "Population Count of Health Insurance by City", x = "City Name", y = "Population Count") +
  theme(axis.text.x = element_text(angle = 45, hjust = 1))
plot

3. Now create a map of your subsetted dataset.

First map chunk here

library(leaflet)
Warning: package 'leaflet' was built under R version 4.3.3
leaflet() |>
  setView(lng = -77.0369, lat =  37.9072, zoom =7) |>
  addProviderTiles("Esri.WorldStreetMap") |>
  addCircles(
    data = access2_dmv,
    radius = access2_dmv$PopulationCount/10
)
Assuming "long" and "lat" are longitude and latitude, respectively

4. Refine your map to include a mousover tooltip

Refined map chunk here

popupcity <- paste0(
      "<b>City: </b>", access2_dmv$CityName, "<br>",
      "<b>State: </b>", access2_dmv$StateDesc, "<br>",
      "<b>Population: </b>", access2_dmv$PopulationCount, "<br>"
    )
library(leaflet)
leaflet() |>
  setView(lng = -77.0369, lat =  37.9072, zoom =7) |>
  addProviderTiles("Esri.WorldStreetMap") |>
  addCircles(
    data = access2_dmv,
    radius = access2_dmv$PopulationCount/10,
    popup = popupcity
    )
Assuming "long" and "lat" are longitude and latitude, respectively

5. Write a paragraph

In a paragraph, describe the plots you created and what they show.

The first plot measures the population of individuals who have no access to health insurance. The x-axis describes all of the cities listed in the access2_dmv data frame. The y-axis measures the population of each city that has no access to health insurance. The Baltimore bar in the first plot shows that the most people who have access to no health insurance in the data set, but that may be because it has the most amount of residents compared to the other cities in the data set. The map plot visualizes where individuals with no health insurance are the most prevalent. The size of the circle on the graph visualizes the size of the population in a designated area that does not have access to health insurance.