Predict customer attrition using the Credit Card data, using the
classification algorithm from the rpart package.
Created a new binary variable Attrited_Customer by
classifying observations of individuals who stayed with the credit card
company as “Existing Customer,” and those who left the company as
“Attrited Customer.” Split the data (10127 observations), into training
and validation datasets (70%/30% , 7137/2990)
Using the validation data, it is observed that the model can:
##
##
## Cell Contents
## |-------------------------|
## | N |
## | Chi-square contribution |
## | N / Row Total |
## | N / Col Total |
## | N / Table Total |
## |-------------------------|
##
##
## Total Observations in Table: 2990
##
##
## | validation_tree$attrited_customer_predicted
## validation_tree$Attrition_Flag | Attrited Customer | Existing Customer | Row Total |
## -------------------------------|-------------------|-------------------|-------------------|
## Attrited Customer | 364 | 118 | 482 |
## | 1155.572 | 206.873 | |
## | 0.755 | 0.245 | 0.161 |
## | 0.802 | 0.047 | |
## | 0.122 | 0.039 | |
## -------------------------------|-------------------|-------------------|-------------------|
## Existing Customer | 90 | 2418 | 2508 |
## | 222.084 | 39.758 | |
## | 0.036 | 0.964 | 0.839 |
## | 0.198 | 0.953 | |
## | 0.030 | 0.809 | |
## -------------------------------|-------------------|-------------------|-------------------|
## Column Total | 454 | 2536 | 2990 |
## | 0.152 | 0.848 | |
## -------------------------------|-------------------|-------------------|-------------------|
##
##
## Statistics for All Table Factors
##
##
## Pearson's Chi-squared test
## ------------------------------------------------------------
## Chi^2 = 1624.287 d.f. = 1 p = 0
##
## Pearson's Chi-squared test with Yates' continuity correction
## ------------------------------------------------------------
## Chi^2 = 1618.706 d.f. = 1 p = 0
##
##