Goal to predict attrition, employees who are likely to leave the company
library(tidyverse)
## ── Attaching packages ─────────────────────────────────────── tidyverse 1.3.2 ──
## ✔ ggplot2 3.4.4 ✔ purrr 1.0.2
## ✔ tibble 3.2.1 ✔ dplyr 1.1.4
## ✔ tidyr 1.3.1 ✔ stringr 1.5.1
## ✔ readr 2.1.2 ✔ forcats 1.0.0
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## ✖ dplyr::filter() masks stats::filter()
## ✖ dplyr::lag() masks stats::lag()
library(parameters)
library(tidymodels) # for model building
## ── Attaching packages ────────────────────────────────────── tidymodels 1.1.1 ──
## ✔ broom 1.0.5 ✔ rsample 1.2.0
## ✔ dials 1.2.0 ✔ tune 1.1.2
## ✔ infer 1.0.6 ✔ workflows 1.1.3
## ✔ modeldata 1.3.0 ✔ workflowsets 1.0.1
## ✔ parsnip 1.1.1 ✔ yardstick 1.3.0
## ✔ recipes 1.0.9
## ── Conflicts ───────────────────────────────────────── tidymodels_conflicts() ──
## ✖ scales::discard() masks purrr::discard()
## ✖ dplyr::filter() masks stats::filter()
## ✖ recipes::fixed() masks stringr::fixed()
## ✖ dplyr::lag() masks stats::lag()
## ✖ infer::p_value() masks parameters::p_value()
## ✖ tune::parameters() masks dials::parameters(), parameters::parameters()
## ✖ yardstick::spec() masks readr::spec()
## ✖ recipes::step() masks stats::step()
## • Dig deeper into tidy modeling with R at https://www.tmwr.org
library(textrecipes) # for preprocessing string
library(xgboost)
##
## Attaching package: 'xgboost'
##
## The following object is masked from 'package:dplyr':
##
## slice
library(tidytext)
library(Binarize)
## Loading required package: diptest
library(correlation)
library(correlationfunnel)
## ══ correlationfunnel Tip #3 ════════════════════════════════════════════════════
## Using `binarize()` with data containing many columns or many rows can increase dimensionality substantially.
## Try subsetting your data column-wise or row-wise to avoid creating too many columns.
## You can always make a big problem smaller by sampling. :)
library(doParallel)
## Loading required package: foreach
##
## Attaching package: 'foreach'
##
## The following objects are masked from 'package:purrr':
##
## accumulate, when
##
## Loading required package: iterators
## Loading required package: parallel
library(LiblineaR)
library(ranger)
library(vip)
##
## Attaching package: 'vip'
##
## The following object is masked from 'package:utils':
##
## vi
library(themis)
members <- readr::read_csv('https://raw.githubusercontent.com/rfordatascience/tidytuesday/master/data/2020/2020-09-22/members.csv')
## Rows: 76519 Columns: 21
## ── Column specification ────────────────────────────────────────────────────────
## Delimiter: ","
## chr (10): expedition_id, member_id, peak_id, peak_name, season, sex, citizen...
## dbl (5): year, age, highpoint_metres, death_height_metres, injury_height_me...
## lgl (6): hired, success, solo, oxygen_used, died, injured
##
## ℹ Use `spec()` to retrieve the full column specification for this data.
## ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
Clean Data
skimr::skim(members)
| Name | members |
| Number of rows | 76519 |
| Number of columns | 21 |
| _______________________ | |
| Column type frequency: | |
| character | 10 |
| logical | 6 |
| numeric | 5 |
| ________________________ | |
| Group variables | None |
Variable type: character
| skim_variable | n_missing | complete_rate | min | max | empty | n_unique | whitespace |
|---|---|---|---|---|---|---|---|
| expedition_id | 0 | 1.00 | 9 | 9 | 0 | 10350 | 0 |
| member_id | 0 | 1.00 | 12 | 12 | 0 | 76518 | 0 |
| peak_id | 0 | 1.00 | 4 | 4 | 0 | 391 | 0 |
| peak_name | 15 | 1.00 | 4 | 25 | 0 | 390 | 0 |
| season | 0 | 1.00 | 6 | 7 | 0 | 5 | 0 |
| sex | 2 | 1.00 | 1 | 1 | 0 | 2 | 0 |
| citizenship | 10 | 1.00 | 2 | 23 | 0 | 212 | 0 |
| expedition_role | 21 | 1.00 | 4 | 25 | 0 | 524 | 0 |
| death_cause | 75413 | 0.01 | 3 | 27 | 0 | 12 | 0 |
| injury_type | 74807 | 0.02 | 3 | 27 | 0 | 11 | 0 |
Variable type: logical
| skim_variable | n_missing | complete_rate | mean | count |
|---|---|---|---|---|
| hired | 0 | 1 | 0.21 | FAL: 60788, TRU: 15731 |
| success | 0 | 1 | 0.38 | FAL: 47320, TRU: 29199 |
| solo | 0 | 1 | 0.00 | FAL: 76398, TRU: 121 |
| oxygen_used | 0 | 1 | 0.24 | FAL: 58286, TRU: 18233 |
| died | 0 | 1 | 0.01 | FAL: 75413, TRU: 1106 |
| injured | 0 | 1 | 0.02 | FAL: 74806, TRU: 1713 |
Variable type: numeric
| skim_variable | n_missing | complete_rate | mean | sd | p0 | p25 | p50 | p75 | p100 | hist |
|---|---|---|---|---|---|---|---|---|---|---|
| year | 0 | 1.00 | 2000.36 | 14.78 | 1905 | 1991 | 2004 | 2012 | 2019 | ▁▁▁▃▇ |
| age | 3497 | 0.95 | 37.33 | 10.40 | 7 | 29 | 36 | 44 | 85 | ▁▇▅▁▁ |
| highpoint_metres | 21833 | 0.71 | 7470.68 | 1040.06 | 3800 | 6700 | 7400 | 8400 | 8850 | ▁▁▆▃▇ |
| death_height_metres | 75451 | 0.01 | 6592.85 | 1308.19 | 400 | 5800 | 6600 | 7550 | 8830 | ▁▁▂▇▆ |
| injury_height_metres | 75510 | 0.01 | 7049.91 | 1214.24 | 400 | 6200 | 7100 | 8000 | 8880 | ▁▁▂▇▇ |
Explore Data
data <- members %>%
# Treat missing values
select(-death_cause, -injury_type, -highpoint_metres, -death_height_metres, -injury_height_metres) %>%
na.omit() %>%
# Drop observations that include missing variables
drop_na() %>%
# Mutate Important Variables
mutate(died = case_when(died == "TRUE" ~ "DIED", died == "FALSE" ~ "no")) %>%
mutate(across(where(is.logical), as.factor))
data %>% count(died)
## # A tibble: 2 × 2
## died n
## <chr> <int>
## 1 DIED 929
## 2 no 72056
members %>%
ggplot(aes(died)) +
geom_bar()
Correlation Plot
# Step 1: Prepare data
data_binarized_tbl <- data %>%
select(-peak_name) %>%
binarize()
data_binarized_tbl %>% glimpse()
## Rows: 72,985
## Columns: 71
## $ expedition_id__EVER88101 <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ `expedition_id__-OTHER` <dbl> 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, …
## $ `member_id__KANG10101-01` <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ `member_id__-OTHER` <dbl> 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, …
## $ peak_id__AMAD <dbl> 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, …
## $ peak_id__ANN1 <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ peak_id__ANN4 <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ peak_id__BARU <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ peak_id__CHOY <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ peak_id__DHA1 <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ peak_id__EVER <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ peak_id__HIML <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ peak_id__KANG <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ peak_id__LHOT <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ peak_id__MAKA <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ peak_id__MANA <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ peak_id__PUMO <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ `peak_id__-OTHER` <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ `year__-Inf_1992` <dbl> 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, …
## $ year__1992_2004 <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ year__2004_2012 <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ year__2012_Inf <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ season__Autumn <dbl> 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, …
## $ season__Spring <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, …
## $ season__Winter <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ `season__-OTHER` <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ sex__F <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ sex__M <dbl> 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, …
## $ `age__-Inf_29` <dbl> 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 1, …
## $ age__29_36 <dbl> 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, …
## $ age__36_44 <dbl> 1, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 1, 0, …
## $ age__44_Inf <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ citizenship__Australia <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ citizenship__Austria <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ citizenship__Canada <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ citizenship__China <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ citizenship__France <dbl> 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, …
## $ citizenship__Germany <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ citizenship__India <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ citizenship__Italy <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ citizenship__Japan <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ citizenship__Nepal <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ citizenship__Netherlands <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ citizenship__New_Zealand <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ citizenship__Poland <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ citizenship__Russia <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ citizenship__S_Korea <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ citizenship__Spain <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ citizenship__Switzerland <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ citizenship__UK <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ citizenship__USA <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 1, …
## $ citizenship__W_Germany <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, …
## $ `citizenship__-OTHER` <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ expedition_role__Climber <dbl> 0, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 0, …
## $ expedition_role__Deputy_Leader <dbl> 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ expedition_role__Exp_Doctor <dbl> 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ `expedition_role__H-A_Worker` <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ expedition_role__Leader <dbl> 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ `expedition_role__-OTHER` <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, …
## $ hired__FALSE <dbl> 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, …
## $ hired__TRUE <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ success__FALSE <dbl> 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, …
## $ success__TRUE <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, …
## $ solo__FALSE <dbl> 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, …
## $ `solo__-OTHER` <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ oxygen_used__FALSE <dbl> 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, …
## $ oxygen_used__TRUE <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ died__DIED <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ died__no <dbl> 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, …
## $ injured__FALSE <dbl> 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, …
## $ injured__TRUE <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
# Step 2: Correlate
data_corr_tbl <- data_binarized_tbl %>%
correlate(died__DIED)
## Warning: correlate(): [Data Imbalance Detected] Consider sampling to balance the classes more than 5%
## Column with imbalance: died__DIED
data_corr_tbl
## # A tibble: 71 × 3
## feature bin correlation
## <fct> <chr> <dbl>
## 1 died DIED 1
## 2 died no -1
## 3 year -Inf_1992 0.0519
## 4 peak_id ANN1 0.0336
## 5 success FALSE 0.0332
## 6 success TRUE -0.0332
## 7 peak_id DHA1 0.0290
## 8 peak_id AMAD -0.0281
## 9 peak_id CHOY -0.0241
## 10 year 2004_2012 -0.0211
## # ℹ 61 more rows
# Step 3: Plot
data_corr_tbl %>%
plot_correlation_funnel()
## Warning: ggrepel: 41 unlabeled data points (too many overlaps). Consider
## increasing max.overlaps
Bar Chart Death vs Season
data %>%
ggplot(aes(x = season, y = died)) +
geom_point()
set.seed(0000)
data_clean <- data %>% sample_n(100)
data_split <- initial_split(data_clean, strata = died)
data_train <- training(data_split)
data_test <- testing(data_split)
data_cv <- rsample::vfold_cv(data_train, strata = died)
data_cv
## # 10-fold cross-validation using stratification
## # A tibble: 10 × 2
## splits id
## <list> <chr>
## 1 <split [67/8]> Fold01
## 2 <split [67/8]> Fold02
## 3 <split [67/8]> Fold03
## 4 <split [67/8]> Fold04
## 5 <split [67/8]> Fold05
## 6 <split [68/7]> Fold06
## 7 <split [68/7]> Fold07
## 8 <split [68/7]> Fold08
## 9 <split [68/7]> Fold09
## 10 <split [68/7]> Fold10
library(caret)
## Loading required package: lattice
##
## Attaching package: 'caret'
## The following objects are masked from 'package:yardstick':
##
## precision, recall, sensitivity, specificity
## The following object is masked from 'package:parameters':
##
## compare_models
## The following object is masked from 'package:purrr':
##
## lift
library(xgboost)
library(themis)
xgboost_rec <- recipes::recipe(died ~., data = data_train) %>%
update_role(peak_id, new_role = "ID") %>%
step_dummy(all_nominal_predictors())
xgboost_rec %>% prep() %>% juice() %>% glimpse()
## Rows: 75
## Columns: 209
## $ peak_id <fct> GAN4, CHOY, EVER, EVER, AMAD, BARU,…
## $ year <dbl> 1989, 2007, 2006, 2011, 1994, 2011,…
## $ age <dbl> 25, 23, 24, 49, 34, 33, 43, 41, 25,…
## $ died <fct> no, no, no, no, no, no, no, no, no,…
## $ expedition_id_AMAD14329 <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0,…
## $ expedition_id_AMAD17328 <dbl> 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0,…
## $ expedition_id_AMAD18320 <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,…
## $ expedition_id_AMAD94308 <dbl> 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0,…
## $ expedition_id_AMAD99311 <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,…
## $ expedition_id_ANN286101 <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,…
## $ expedition_id_BARU08104 <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,…
## $ expedition_id_BARU11303 <dbl> 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0,…
## $ expedition_id_BARU15305 <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,…
## $ expedition_id_BARU16301 <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,…
## $ expedition_id_BARU80101 <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,…
## $ expedition_id_BARU99306 <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,…
## $ expedition_id_CHOY01109 <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,…
## $ expedition_id_CHOY01326 <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,…
## $ expedition_id_CHOY02112 <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,…
## $ expedition_id_CHOY05338 <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,…
## $ expedition_id_CHOY07309 <dbl> 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,…
## $ expedition_id_CHOY09352 <dbl> 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0,…
## $ expedition_id_CHOY09361 <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,…
## $ expedition_id_CHOY13110 <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,…
## $ expedition_id_CHOY13324 <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,…
## $ expedition_id_CHOY16301 <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,…
## $ expedition_id_CHOY87104 <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,…
## $ expedition_id_CHOY96101 <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,…
## $ expedition_id_CHOY96109 <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1,…
## $ expedition_id_DHA190304 <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,…
## $ expedition_id_EVER03144 <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,…
## $ expedition_id_EVER03159 <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,…
## $ expedition_id_EVER04110 <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,…
## $ expedition_id_EVER06111 <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,…
## $ expedition_id_EVER06193 <dbl> 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0,…
## $ expedition_id_EVER07126 <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,…
## $ expedition_id_EVER07138 <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,…
## $ expedition_id_EVER08139 <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,…
## $ expedition_id_EVER09168 <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,…
## $ expedition_id_EVER11103 <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,…
## $ expedition_id_EVER11142 <dbl> 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0,…
## $ expedition_id_EVER14104 <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,…
## $ expedition_id_EVER15117 <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,…
## $ expedition_id_EVER18116 <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,…
## $ expedition_id_EVER19125 <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,…
## $ expedition_id_EVER19138 <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,…
## $ expedition_id_EVER19169 <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,…
## $ expedition_id_EVER88101 <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,…
## $ expedition_id_EVER94107 <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,…
## $ expedition_id_EVER94201 <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,…
## $ expedition_id_GAN489301 <dbl> 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,…
## $ expedition_id_HIML01101 <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,…
## $ expedition_id_LANG89302 <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,…
## $ expedition_id_LHOT18107 <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,…
## $ expedition_id_LHOT19106 <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,…
## $ expedition_id_LIK214301 <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,…
## $ expedition_id_LSHR01101 <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0,…
## $ expedition_id_MAKA18105 <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,…
## $ expedition_id_MAKA54101 <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,…
## $ expedition_id_MAKA73101 <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,…
## $ expedition_id_MAKA75301 <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,…
## $ expedition_id_MAKA88101 <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,…
## $ expedition_id_MAKA93303 <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,…
## $ expedition_id_MANA12348 <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,…
## $ expedition_id_MANA16301 <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,…
## $ expedition_id_MANA88101 <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,…
## $ expedition_id_MUKT15302 <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,…
## $ expedition_id_NORB03201 <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,…
## $ expedition_id_NUPK05301 <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,…
## $ expedition_id_NUPT96301 <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,…
## $ expedition_id_PUMO08304 <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,…
## $ expedition_id_PUMO94301 <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,…
## $ expedition_id_PUMO99304 <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,…
## $ expedition_id_PUTH19101 <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,…
## $ expedition_id_THAM80101 <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0,…
## $ expedition_id_URMA10101 <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,…
## $ member_id_AMAD14329.02 <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0,…
## $ member_id_AMAD17328.02 <dbl> 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0,…
## $ member_id_AMAD18320.07 <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,…
## $ member_id_AMAD94308.02 <dbl> 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0,…
## $ member_id_AMAD99311.02 <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,…
## $ member_id_ANN286101.03 <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,…
## $ member_id_BARU08104.01 <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,…
## $ member_id_BARU11303.11 <dbl> 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0,…
## $ member_id_BARU15305.04 <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,…
## $ member_id_BARU16301.11 <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,…
## $ member_id_BARU80101.07 <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,…
## $ member_id_BARU99306.02 <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,…
## $ member_id_CHOY01109.05 <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,…
## $ member_id_CHOY01326.03 <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,…
## $ member_id_CHOY01326.06 <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,…
## $ member_id_CHOY02112.01 <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,…
## $ member_id_CHOY05338.03 <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,…
## $ member_id_CHOY07309.02 <dbl> 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,…
## $ member_id_CHOY09352.01 <dbl> 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0,…
## $ member_id_CHOY09352.02 <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,…
## $ member_id_CHOY09361.09 <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,…
## $ member_id_CHOY13110.07 <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,…
## $ member_id_CHOY13324.05 <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,…
## $ member_id_CHOY16301.02 <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,…
## $ member_id_CHOY87104.02 <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,…
## $ member_id_CHOY96101.08 <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,…
## $ member_id_CHOY96109.07 <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1,…
## $ member_id_DHA190304.05 <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,…
## $ member_id_EVER03144.15 <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,…
## $ member_id_EVER03159.04 <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,…
## $ member_id_EVER04110.11 <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,…
## $ member_id_EVER06111.16 <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,…
## $ member_id_EVER06193.02 <dbl> 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0,…
## $ member_id_EVER07126.20 <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,…
## $ member_id_EVER07138.03 <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,…
## $ member_id_EVER08139.19 <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,…
## $ member_id_EVER09168.56 <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,…
## $ member_id_EVER11103.36 <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,…
## $ member_id_EVER11142.33 <dbl> 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0,…
## $ member_id_EVER14104.02 <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,…
## $ member_id_EVER15117.06 <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,…
## $ member_id_EVER18116.23 <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,…
## $ member_id_EVER19125.04 <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,…
## $ member_id_EVER19138.05 <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,…
## $ member_id_EVER19169.01 <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,…
## $ member_id_EVER88101.66 <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,…
## $ member_id_EVER94107.13 <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,…
## $ member_id_EVER94201.01 <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,…
## $ member_id_GAN489301.02 <dbl> 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,…
## $ member_id_HIML01101.10 <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,…
## $ member_id_LANG89302.08 <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,…
## $ member_id_LHOT18107.01 <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,…
## $ member_id_LHOT19106.02 <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,…
## $ member_id_LIK214301.01 <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,…
## $ member_id_LSHR01101.02 <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0,…
## $ member_id_MAKA18105.01 <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,…
## $ member_id_MAKA54101.01 <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,…
## $ member_id_MAKA73101.03 <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,…
## $ member_id_MAKA75301.19 <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,…
## $ member_id_MAKA88101.02 <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,…
## $ member_id_MAKA93303.01 <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,…
## $ member_id_MANA12348.22 <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,…
## $ member_id_MANA16301.03 <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,…
## $ member_id_MANA88101.01 <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,…
## $ member_id_MUKT15302.13 <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,…
## $ member_id_NORB03201.01 <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,…
## $ member_id_NUPK05301.23 <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,…
## $ member_id_NUPT96301.08 <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,…
## $ member_id_PUMO08304.02 <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,…
## $ member_id_PUMO94301.05 <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,…
## $ member_id_PUMO99304.10 <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,…
## $ member_id_PUTH19101.03 <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,…
## $ member_id_THAM80101.01 <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0,…
## $ member_id_URMA10101.31 <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,…
## $ peak_name_Annapurna.II <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,…
## $ peak_name_Baruntse <dbl> 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0,…
## $ peak_name_Cho.Oyu <dbl> 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1,…
## $ peak_name_Dhaulagiri.I <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,…
## $ peak_name_Everest <dbl> 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0,…
## $ peak_name_Ganesh.IV <dbl> 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,…
## $ peak_name_Himlung.Himal <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,…
## $ peak_name_Langtang.Lirung <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,…
## $ peak_name_Lhotse <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,…
## $ peak_name_Lhotse.Shar <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0,…
## $ peak_name_Linkhu.Chuli.Nup <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,…
## $ peak_name_Makalu <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,…
## $ peak_name_Manaslu <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,…
## $ peak_name_Mukut.Himal <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,…
## $ peak_name_Norbu.Kang <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,…
## $ peak_name_Nupche.Kang <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,…
## $ peak_name_Nuptse <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,…
## $ peak_name_Pumori <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,…
## $ peak_name_Putha.Hiunchuli <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,…
## $ peak_name_Thamserku <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0,…
## $ peak_name_Urkema <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,…
## $ season_Spring <dbl> 0, 0, 1, 1, 0, 0, 0, 0, 1, 1, 0, 1,…
## $ season_Summer <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,…
## $ sex_M <dbl> 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,…
## $ citizenship_Austria <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,…
## $ citizenship_China <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,…
## $ citizenship_Czechoslovakia <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,…
## $ citizenship_Denmark <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1,…
## $ citizenship_France <dbl> 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0,…
## $ citizenship_Germany <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,…
## $ citizenship_Greece <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,…
## $ citizenship_India <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,…
## $ citizenship_Italy <dbl> 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0,…
## $ citizenship_Japan <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0,…
## $ citizenship_Jordan <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,…
## $ citizenship_Nepal <dbl> 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0,…
## $ citizenship_Netherlands <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,…
## $ citizenship_New.Zealand <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,…
## $ citizenship_Norway <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,…
## $ citizenship_Poland <dbl> 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,…
## $ citizenship_Qatar <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,…
## $ citizenship_Russia <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,…
## $ citizenship_S.Korea <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0,…
## $ citizenship_Spain <dbl> 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,…
## $ citizenship_Sweden <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,…
## $ citizenship_Switzerland <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,…
## $ citizenship_UK <dbl> 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0,…
## $ citizenship_USA <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0,…
## $ citizenship_Yugoslavia <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,…
## $ expedition_role_Deputy.Leader <dbl> 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,…
## $ expedition_role_H.A.Assistant <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,…
## $ expedition_role_H.A.Worker <dbl> 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0,…
## $ expedition_role_Leader <dbl> 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0,…
## $ expedition_role_Support.Member..S. <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,…
## $ hired_TRUE. <dbl> 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0,…
## $ success_TRUE. <dbl> 0, 0, 0, 1, 1, 1, 1, 1, 0, 1, 0, 0,…
## $ solo_TRUE. <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,…
## $ oxygen_used_TRUE. <dbl> 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0,…
## $ injured_TRUE. <dbl> 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0,…
library(usemodels)
usemodels::use_xgboost(died ~., data = data_train)
## xgboost_recipe <-
## recipe(formula = died ~ ., data = data_train) %>%
## step_zv(all_predictors())
##
## xgboost_spec <-
## boost_tree(trees = tune(), min_n = tune(), tree_depth = tune(), learn_rate = tune(),
## loss_reduction = tune(), sample_size = tune()) %>%
## set_mode("classification") %>%
## set_engine("xgboost")
##
## xgboost_workflow <-
## workflow() %>%
## add_recipe(xgboost_recipe) %>%
## add_model(xgboost_spec)
##
## set.seed(34935)
## xgboost_tune <-
## tune_grid(xgboost_workflow, resamples = stop("add your rsample object"), grid = stop("add number of candidate points"))
xgboost_spec <-
boost_tree(trees = tune(), min_n = tune(), tree_depth = tune(), learn_rate = tune(),
loss_reduction = tune(), sample_size = tune()) %>%
set_mode("classification") %>%
set_engine("xgboost")
xgboost_workflow <-
workflow() %>%
add_recipe(xgboost_rec) %>%
add_model(xgboost_spec)
doParallel::registerDoParallel()
set.seed(87834)
xgboost_tune <- tune_grid(xgboost_workflow,
resamples = data_cv,
grid = 5)
## Warning: All models failed. Run `show_notes(.Last.tune.result)` for more
## information.