New York Times Recommendation Engine Scenario Design Analysis
Your task is to analyze an existing recommender system that you find
interesting. You should:
Perform a Scenario Design analysis as described below. Consider
whether it makes sense for your selected recommender system to perform
scenario design twice, once for the organization (e.g. Amazon.com) and
once for the organization’s customers.
Attempt to reverse engineer what you can about the site, from the
site interface and any available information that you can find on the
Internet or elsewhere.
Include specific recommendations about how to improve the site’s
recommendation capabilities going forward.
Who are your target users?
The target users of the New York Times Recommendation Engine are:
Regular Readers: People who frequently visit the New York Times
Website or app to explore news and articles across various
topics.
Casual Readers: Users who utilize the New York Times occasionally
or are interested in visiting the app when they are searching for their
interests.
New Readers: People who are new to utilizing the New York Times
platform and are not aware of certain preferences.
What are their key goals?
- Finding relevant content: Users want to discover articles that match
their interests,preferences including news updates, oped pieces, feature
stories, or niche topics.
- Exploration and Discovery: Users aim to explore new topics,
perspectives from op ed pieces, and authors that they were not aware of
or expanding their knowledge on other topics.
- Bookmark or save for later: Users may want to save articles they
find interesting to read later or reference in the future, either for
personal enjoyment or professional purposes.
- Personalized Browsing Interests: Users enjoy personalized browsing
where recommendations align with their reading habits, preferences, and
interests.
Recommender System Algorithms
- Collaborative Filtering:
Algorithm: Collaborative filtering methods recommend items based
on the preferences and behavior of similar users. This can be user-based
or item-based.
Data Preparation: User-item interaction data, such as clicks,
views, and saves, would be collected and organized into a user-item
matrix. The matrix could be sparse, with rows representing users and
columns representing articles. Missing values indicate articles not
interacted with by users.
- Content-Based Filtering:
Algorithm: Content-based filtering recommends items similar to
those the user has interacted with in the past, based on item attributes
or content.
Data Preparation: Article metadata, such as title, author,
section, keywords, and text content, would be extracted and transformed
into feature vectors. Techniques like TF-IDF (Term Frequency-Inverse
Document Frequency) or word embeddings (e.g., Word2Vec, GloVe) could be
used to represent articles as numerical vectors.
- Deep Learning Models:
Algorithm: Deep learning models, such as neural networks, can
learn complex patterns from user-item interaction data and article
content.
Data Preparation: Deep learning models require extensive
preprocessing of data, including encoding categorical features (e.g.,
article category), handling text data (e.g., tokenization, embedding),
and possibly sequence modeling for temporal patterns in user
behavior.
How can you help them accomplish those goals?
To help users accomplish their goals, the New York Times
Recommendation Engine can implement the following strategies:
- Personalized Recommendations: Engineers can leverage various machine
learning algorithms to analyze user behavior, preferences, and reading
history to provide personalized article recommendations tailored to each
user’s interests.
- Diverse Content Suggestions: Offer a diverse range of content
recommendations spanning various topics, sections, authors, and
publication dates to cater to different user interests and
preferences.
- Bookmarking Features: Provide users with the ability to bookmark or
save articles to their account, allowing them to easily access and
revisit saved content at their convenience.
LS0tDQp0aXRsZTogIkRpc2N1c3Npb24gNCAtIFdlZWsgMTE6IFJlY29tbWVuZGVyIFN5c3RlbXMiDQphdXRob3I6ICJQdWphIFJveSINCmRhdGU6ICI0LzcvMjQiDQpvdXRwdXQ6IG9wZW5pbnRybzo6bGFiX3JlcG9ydA0KLS0tDQoNCiMjIyBOZXcgWW9yayBUaW1lcyBSZWNvbW1lbmRhdGlvbiBFbmdpbmUgU2NlbmFyaW8gRGVzaWduIEFuYWx5c2lzDQoNCllvdXIgdGFzayBpcyB0byBhbmFseXplIGFuIGV4aXN0aW5nIHJlY29tbWVuZGVyIHN5c3RlbSB0aGF0IHlvdSBmaW5kIGludGVyZXN0aW5nLiAgWW91IHNob3VsZDoNCg0KLSBQZXJmb3JtIGEgU2NlbmFyaW8gRGVzaWduIGFuYWx5c2lzIGFzIGRlc2NyaWJlZCBiZWxvdy4gIENvbnNpZGVyIHdoZXRoZXIgaXQgbWFrZXMgc2Vuc2UgZm9yIHlvdXIgc2VsZWN0ZWQgcmVjb21tZW5kZXIgc3lzdGVtIHRvIHBlcmZvcm0gc2NlbmFyaW8gZGVzaWduIHR3aWNlLCBvbmNlIGZvciB0aGUgb3JnYW5pemF0aW9uIChlLmcuIEFtYXpvbi5jb20pIGFuZCBvbmNlIGZvciB0aGUgb3JnYW5pemF0aW9uJ3MgY3VzdG9tZXJzLg0KDQotIEF0dGVtcHQgdG8gcmV2ZXJzZSBlbmdpbmVlciB3aGF0IHlvdSBjYW4gYWJvdXQgdGhlIHNpdGUsIGZyb20gdGhlIHNpdGUgaW50ZXJmYWNlIGFuZCBhbnkgYXZhaWxhYmxlIGluZm9ybWF0aW9uIHRoYXQgeW91IGNhbiBmaW5kIG9uIHRoZSBJbnRlcm5ldCBvciBlbHNld2hlcmUuDQoNCi0gSW5jbHVkZSBzcGVjaWZpYyByZWNvbW1lbmRhdGlvbnMgYWJvdXQgaG93IHRvIGltcHJvdmUgdGhlIHNpdGUncyByZWNvbW1lbmRhdGlvbiBjYXBhYmlsaXRpZXMgZ29pbmcgZm9yd2FyZC4gDQoNCiMjIyBXaG8gYXJlIHlvdXIgdGFyZ2V0IHVzZXJzPw0KVGhlIHRhcmdldCB1c2VycyBvZiB0aGUgTmV3IFlvcmsgVGltZXMgUmVjb21tZW5kYXRpb24gRW5naW5lIGFyZToNCg0KLSBSZWd1bGFyIFJlYWRlcnM6IFBlb3BsZSB3aG8gZnJlcXVlbnRseSB2aXNpdCB0aGUgTmV3IFlvcmsgVGltZXMgV2Vic2l0ZSBvciBhcHAgdG8gZXhwbG9yZSBuZXdzIGFuZCBhcnRpY2xlcyBhY3Jvc3MgdmFyaW91cyB0b3BpY3MuDQoNCi0gQ2FzdWFsIFJlYWRlcnM6IFVzZXJzIHdobyB1dGlsaXplIHRoZSBOZXcgWW9yayBUaW1lcyBvY2Nhc2lvbmFsbHkgb3IgYXJlIGludGVyZXN0ZWQgaW4gdmlzaXRpbmcgdGhlIGFwcCB3aGVuIHRoZXkgYXJlIHNlYXJjaGluZyBmb3IgdGhlaXIgaW50ZXJlc3RzLg0KDQotIE5ldyBSZWFkZXJzOiBQZW9wbGUgd2hvIGFyZSBuZXcgdG8gdXRpbGl6aW5nIHRoZSBOZXcgWW9yayBUaW1lcyBwbGF0Zm9ybSBhbmQgYXJlIG5vdCBhd2FyZSBvZiBjZXJ0YWluIHByZWZlcmVuY2VzLg0KDQojIyMgV2hhdCBhcmUgdGhlaXIga2V5IGdvYWxzPw0KLSBGaW5kaW5nIHJlbGV2YW50IGNvbnRlbnQ6IFVzZXJzIHdhbnQgdG8gZGlzY292ZXIgYXJ0aWNsZXMgdGhhdCBtYXRjaCB0aGVpciBpbnRlcmVzdHMscHJlZmVyZW5jZXMgaW5jbHVkaW5nIG5ld3MgdXBkYXRlcywgb3BlZCBwaWVjZXMsIGZlYXR1cmUgc3Rvcmllcywgb3IgbmljaGUgdG9waWNzLg0KLSBFeHBsb3JhdGlvbiBhbmQgRGlzY292ZXJ5OiBVc2VycyBhaW0gdG8gZXhwbG9yZSBuZXcgdG9waWNzLCBwZXJzcGVjdGl2ZXMgZnJvbSBvcCBlZCBwaWVjZXMsIGFuZCBhdXRob3JzIHRoYXQgdGhleSB3ZXJlIG5vdCBhd2FyZSBvZiBvciBleHBhbmRpbmcgdGhlaXIga25vd2xlZGdlIG9uIG90aGVyIHRvcGljcy4NCi0gQm9va21hcmsgb3Igc2F2ZSBmb3IgbGF0ZXI6IFVzZXJzIG1heSB3YW50IHRvIHNhdmUgYXJ0aWNsZXMgdGhleSBmaW5kIGludGVyZXN0aW5nIHRvIHJlYWQgbGF0ZXIgb3IgcmVmZXJlbmNlIGluIHRoZSBmdXR1cmUsIGVpdGhlciBmb3IgcGVyc29uYWwgZW5qb3ltZW50IG9yIHByb2Zlc3Npb25hbCBwdXJwb3Nlcy4NCi0gUGVyc29uYWxpemVkIEJyb3dzaW5nIEludGVyZXN0czogVXNlcnMgZW5qb3kgcGVyc29uYWxpemVkIGJyb3dzaW5nIHdoZXJlIHJlY29tbWVuZGF0aW9ucyBhbGlnbiB3aXRoIHRoZWlyIHJlYWRpbmcgaGFiaXRzLCBwcmVmZXJlbmNlcywgYW5kIGludGVyZXN0cy4NCg0KIyMjIFJldmVyc2UgRW5naW5lZXJpbmcgb2YgdGhlIFBsYXRmb3JtDQoNCkluIGVmZm9ydHMgb2YgTmV3IFlvcmsgVGltZXMgcmVjb21tZW5kYXRpb24gc3lzdGVtLCB5b3UgY2FuIGFuYWx5emUgaXRzIHdlYnNpdGUgaW50ZXJmYWNlIGFuZCBnYXRoZXIgaW5mb3JtYXRpb24gZnJvbSBhdmFpbGFibGUgc291cmNlcyBvbiB0aGUgaW50ZXJuZXQ6DQoNClVzZXIgSW50ZXJmYWNlIEFuYWx5c2lzOg0KDQotIFRoZSBOZXcgWW9yayBUaW1lcyB3ZWJzaXRlIGZlYXR1cmVzIGEgIlJlY29tbWVuZGVkIGZvciBZb3UiIHNlY3Rpb24gb24gdGhlIGhvbWVwYWdlIG9yIHdpdGhpbiB0aGUgdXNlcidzIGFjY291bnQgc2V0dGluZ3MuDQoNCi0gVXNlcnMgbWF5IGFsc28gZW5jb3VudGVyIHBlcnNvbmFsaXplZCByZWNvbW1lbmRhdGlvbnMgaW50ZXJzcGVyc2VkIHRocm91Z2hvdXQgdGhlIHNpdGUsIHN1Y2ggYXMgaW4gdGhlIHNpZGViYXIgb3IgYXQgdGhlIGVuZCBvZiBhcnRpY2xlcy4NCg0KLSBSZWNvbW1lbmRhdGlvbnMgbWF5IGJlIGJhc2VkIG9uIGJyb3dzaW5nIGhpc3RvcnksIHNhdmVkIGFydGljbGVzLCB1c2VyIHByZWZlcmVuY2VzIChpZiBwcm92aWRlZCksIGFuZCBkZW1vZ3JhcGhpYyBpbmZvcm1hdGlvbi4NCg0KSW5mb3JtYXRpb24gZnJvbSBBdmFpbGFibGUgU291cmNlczoNCg0KLSBUaGUgTmV3IFlvcmsgVGltZXMgaGFzIHB1Ymxpc2hlZCBhcnRpY2xlcyBhbmQgYmxvZyBwb3N0cyBkaXNjdXNzaW5nIHRoZWlyIGFwcHJvYWNoIHRvIHJlY29tbWVuZGF0aW9uIHN5c3RlbXMgYW5kIHBlcnNvbmFsaXphdGlvbi4NCg0KLSBTVEVNIGJsb2dzIGFuZCBwcmVzZW50YXRpb25zIGJ5IE5ldyBZb3JrIFRpbWVzIFNvZnR3YXJlIERldmVsb3BlcnMgbWF5IHByb3ZpZGUgaW5zaWdodHMgaW50byB0aGUgdGVjaG5vbG9neSBhbmQgYWxnb3JpdGhtcyB1c2VkIGZvciByZWNvbW1lbmRhdGlvbi4NCg0KLSBJbnRlcnZpZXdzIHdpdGggTmV3IFlvcmsgVGltZXMgc3RhZmYsIHN1Y2ggYXMgRGF0YSBTY2llbnRpc3RzIG9yIFByb2R1Y3QgTWFuYWdlcnMsIG1pZ2h0IG9mZmVyIGluc2lnaHRzIGludG8gdGhlIGdvYWxzIGFuZCBzdHJhdGVnaWVzIGJlaGluZCB0aGVpciByZWNvbW1lbmRhdGlvbiBzeXN0ZW0uDQoNCiMjIyBSZWNvbW1lbmRlciBTeXN0ZW0gQWxnb3JpdGhtcyANCg0KMS4gQ29sbGFib3JhdGl2ZSBGaWx0ZXJpbmc6DQoNCi0gQWxnb3JpdGhtOiBDb2xsYWJvcmF0aXZlIGZpbHRlcmluZyBtZXRob2RzIHJlY29tbWVuZCBpdGVtcyBiYXNlZCBvbiB0aGUgcHJlZmVyZW5jZXMgYW5kIGJlaGF2aW9yIG9mIHNpbWlsYXIgdXNlcnMuIFRoaXMgY2FuIGJlIHVzZXItYmFzZWQgb3IgaXRlbS1iYXNlZC4NCg0KLSBEYXRhIFByZXBhcmF0aW9uOiBVc2VyLWl0ZW0gaW50ZXJhY3Rpb24gZGF0YSwgc3VjaCBhcyBjbGlja3MsIHZpZXdzLCBhbmQgc2F2ZXMsIHdvdWxkIGJlIGNvbGxlY3RlZCBhbmQgb3JnYW5pemVkIGludG8gYSB1c2VyLWl0ZW0gbWF0cml4LiBUaGUgbWF0cml4IGNvdWxkIGJlIHNwYXJzZSwgd2l0aCByb3dzIHJlcHJlc2VudGluZyB1c2VycyBhbmQgY29sdW1ucyByZXByZXNlbnRpbmcgYXJ0aWNsZXMuIE1pc3NpbmcgdmFsdWVzIGluZGljYXRlIGFydGljbGVzIG5vdCBpbnRlcmFjdGVkIHdpdGggYnkgdXNlcnMuDQoNCjIuIENvbnRlbnQtQmFzZWQgRmlsdGVyaW5nOg0KDQotIEFsZ29yaXRobTogQ29udGVudC1iYXNlZCBmaWx0ZXJpbmcgcmVjb21tZW5kcyBpdGVtcyBzaW1pbGFyIHRvIHRob3NlIHRoZSB1c2VyIGhhcyBpbnRlcmFjdGVkIHdpdGggaW4gdGhlIHBhc3QsIGJhc2VkIG9uIGl0ZW0gYXR0cmlidXRlcyBvciBjb250ZW50Lg0KDQotIERhdGEgUHJlcGFyYXRpb246IEFydGljbGUgbWV0YWRhdGEsIHN1Y2ggYXMgdGl0bGUsIGF1dGhvciwgc2VjdGlvbiwga2V5d29yZHMsIGFuZCB0ZXh0IGNvbnRlbnQsIHdvdWxkIGJlIGV4dHJhY3RlZCBhbmQgdHJhbnNmb3JtZWQgaW50byBmZWF0dXJlIHZlY3RvcnMuIFRlY2huaXF1ZXMgbGlrZSBURi1JREYgKFRlcm0gRnJlcXVlbmN5LUludmVyc2UgRG9jdW1lbnQgRnJlcXVlbmN5KSBvciB3b3JkIGVtYmVkZGluZ3MgKGUuZy4sIFdvcmQyVmVjLCBHbG9WZSkgY291bGQgYmUgdXNlZCB0byByZXByZXNlbnQgYXJ0aWNsZXMgYXMgbnVtZXJpY2FsIHZlY3RvcnMuDQoNCjMuIERlZXAgTGVhcm5pbmcgTW9kZWxzOg0KDQotIEFsZ29yaXRobTogRGVlcCBsZWFybmluZyBtb2RlbHMsIHN1Y2ggYXMgbmV1cmFsIG5ldHdvcmtzLCBjYW4gbGVhcm4gY29tcGxleCBwYXR0ZXJucyBmcm9tIHVzZXItaXRlbSBpbnRlcmFjdGlvbiBkYXRhIGFuZCBhcnRpY2xlIGNvbnRlbnQuDQoNCi0gRGF0YSBQcmVwYXJhdGlvbjogRGVlcCBsZWFybmluZyBtb2RlbHMgcmVxdWlyZSBleHRlbnNpdmUgcHJlcHJvY2Vzc2luZyBvZiBkYXRhLCBpbmNsdWRpbmcgZW5jb2RpbmcgY2F0ZWdvcmljYWwgZmVhdHVyZXMgKGUuZy4sIGFydGljbGUgY2F0ZWdvcnkpLCBoYW5kbGluZyB0ZXh0IGRhdGEgKGUuZy4sIHRva2VuaXphdGlvbiwgZW1iZWRkaW5nKSwgYW5kIHBvc3NpYmx5IHNlcXVlbmNlIG1vZGVsaW5nIGZvciB0ZW1wb3JhbCBwYXR0ZXJucyBpbiB1c2VyIGJlaGF2aW9yLg0KDQojIyMgSG93IGNhbiB5b3UgaGVscCB0aGVtIGFjY29tcGxpc2ggdGhvc2UgZ29hbHM/DQpUbyBoZWxwIHVzZXJzIGFjY29tcGxpc2ggdGhlaXIgZ29hbHMsIHRoZSBOZXcgWW9yayBUaW1lcyBSZWNvbW1lbmRhdGlvbiBFbmdpbmUgY2FuIGltcGxlbWVudCB0aGUgZm9sbG93aW5nIHN0cmF0ZWdpZXM6DQoNCi0gUGVyc29uYWxpemVkIFJlY29tbWVuZGF0aW9uczogRW5naW5lZXJzIGNhbiBsZXZlcmFnZSB2YXJpb3VzIG1hY2hpbmUgbGVhcm5pbmcgYWxnb3JpdGhtcyB0byBhbmFseXplIHVzZXIgYmVoYXZpb3IsIHByZWZlcmVuY2VzLCBhbmQgcmVhZGluZyBoaXN0b3J5IHRvIHByb3ZpZGUgcGVyc29uYWxpemVkIGFydGljbGUgcmVjb21tZW5kYXRpb25zIHRhaWxvcmVkIHRvIGVhY2ggdXNlcidzIGludGVyZXN0cy4NCi0gRGl2ZXJzZSBDb250ZW50IFN1Z2dlc3Rpb25zOiBPZmZlciBhIGRpdmVyc2UgcmFuZ2Ugb2YgY29udGVudCByZWNvbW1lbmRhdGlvbnMgc3Bhbm5pbmcgdmFyaW91cyB0b3BpY3MsIHNlY3Rpb25zLCBhdXRob3JzLCBhbmQgcHVibGljYXRpb24gZGF0ZXMgdG8gY2F0ZXIgdG8gZGlmZmVyZW50IHVzZXIgaW50ZXJlc3RzIGFuZCBwcmVmZXJlbmNlcy4NCi0gQm9va21hcmtpbmcgRmVhdHVyZXM6IFByb3ZpZGUgdXNlcnMgd2l0aCB0aGUgYWJpbGl0eSB0byBib29rbWFyayBvciBzYXZlIGFydGljbGVzIHRvIHRoZWlyIGFjY291bnQsIGFsbG93aW5nIHRoZW0gdG8gZWFzaWx5IGFjY2VzcyBhbmQgcmV2aXNpdCBzYXZlZCBjb250ZW50IGF0IHRoZWlyIGNvbnZlbmllbmNlLg0KDQoNCg0KDQo=