Healthy Cities GIS Assignment

Author

Merveille Kuendzong

Load the libraries and set the working directory

library(tidyverse)
library(tidyr)
library(leaflet)
library(sf)
library(knitr)

setwd("C:/Users/kmerv_6exilcx/Dropbox/SPRING 2024/Data 110/week10")
cities500 <- read_csv("500CitiesLocalHealthIndicators.cdc.csv")

The GeoLocation variable has (lat, long) format

Split GeoLocation (lat, long) into two columns: lat and long

latlong <- cities500|>
  mutate(GeoLocation = str_replace_all(GeoLocation, "[()]", ""))|>
  separate(GeoLocation, into = c("lat", "long"), sep = ",", convert = TRUE)
head(latlong)
# A tibble: 6 × 25
   Year StateAbbr StateDesc  CityName  GeographicLevel DataSource Category      
  <dbl> <chr>     <chr>      <chr>     <chr>           <chr>      <chr>         
1  2017 CA        California Hawthorne Census Tract    BRFSS      Health Outcom…
2  2017 CA        California Hawthorne City            BRFSS      Unhealthy Beh…
3  2017 CA        California Hayward   City            BRFSS      Health Outcom…
4  2017 CA        California Hayward   City            BRFSS      Unhealthy Beh…
5  2017 CA        California Hemet     City            BRFSS      Prevention    
6  2017 CA        California Indio     Census Tract    BRFSS      Health Outcom…
# ℹ 18 more variables: UniqueID <chr>, Measure <chr>, Data_Value_Unit <chr>,
#   DataValueTypeID <chr>, Data_Value_Type <chr>, Data_Value <dbl>,
#   Low_Confidence_Limit <dbl>, High_Confidence_Limit <dbl>,
#   Data_Value_Footnote_Symbol <chr>, Data_Value_Footnote <chr>,
#   PopulationCount <dbl>, lat <dbl>, long <dbl>, CategoryID <chr>,
#   MeasureId <chr>, CityFIPS <dbl>, TractFIPS <dbl>, Short_Question_Text <chr>

Filter the dataset

Remove the StateDesc that includes the United Sates, select Prevention as the category (of interest), filter for only measuring crude prevalence and select only 2017.

latlong_clean <- latlong |>
  filter(StateDesc != "United States") |>
  filter(Category == "Prevention") |>
  filter(Data_Value_Type == "Crude prevalence") |>
  filter(Year == 2017)
head(latlong_clean)
# A tibble: 6 × 25
   Year StateAbbr StateDesc  CityName   GeographicLevel DataSource Category  
  <dbl> <chr>     <chr>      <chr>      <chr>           <chr>      <chr>     
1  2017 AL        Alabama    Montgomery City            BRFSS      Prevention
2  2017 CA        California Concord    City            BRFSS      Prevention
3  2017 CA        California Concord    City            BRFSS      Prevention
4  2017 CA        California Fontana    City            BRFSS      Prevention
5  2017 CA        California Richmond   Census Tract    BRFSS      Prevention
6  2017 FL        Florida    Davie      Census Tract    BRFSS      Prevention
# ℹ 18 more variables: UniqueID <chr>, Measure <chr>, Data_Value_Unit <chr>,
#   DataValueTypeID <chr>, Data_Value_Type <chr>, Data_Value <dbl>,
#   Low_Confidence_Limit <dbl>, High_Confidence_Limit <dbl>,
#   Data_Value_Footnote_Symbol <chr>, Data_Value_Footnote <chr>,
#   PopulationCount <dbl>, lat <dbl>, long <dbl>, CategoryID <chr>,
#   MeasureId <chr>, CityFIPS <dbl>, TractFIPS <dbl>, Short_Question_Text <chr>

What variables are included? (can any of them be removed?)

names(latlong_clean)
 [1] "Year"                       "StateAbbr"                 
 [3] "StateDesc"                  "CityName"                  
 [5] "GeographicLevel"            "DataSource"                
 [7] "Category"                   "UniqueID"                  
 [9] "Measure"                    "Data_Value_Unit"           
[11] "DataValueTypeID"            "Data_Value_Type"           
[13] "Data_Value"                 "Low_Confidence_Limit"      
[15] "High_Confidence_Limit"      "Data_Value_Footnote_Symbol"
[17] "Data_Value_Footnote"        "PopulationCount"           
[19] "lat"                        "long"                      
[21] "CategoryID"                 "MeasureId"                 
[23] "CityFIPS"                   "TractFIPS"                 
[25] "Short_Question_Text"       

Remove the variables that will not be used in the assignment

prevention <- latlong_clean |>
  select(-DataSource,-Data_Value_Unit, -DataValueTypeID, -Low_Confidence_Limit, -High_Confidence_Limit, -Data_Value_Footnote_Symbol, -Data_Value_Footnote)
head(prevention)
# A tibble: 6 × 18
   Year StateAbbr StateDesc  CityName  GeographicLevel Category UniqueID Measure
  <dbl> <chr>     <chr>      <chr>     <chr>           <chr>    <chr>    <chr>  
1  2017 AL        Alabama    Montgome… City            Prevent… 151000   Choles…
2  2017 CA        California Concord   City            Prevent… 616000   Visits…
3  2017 CA        California Concord   City            Prevent… 616000   Choles…
4  2017 CA        California Fontana   City            Prevent… 624680   Visits…
5  2017 CA        California Richmond  Census Tract    Prevent… 0660620… Choles…
6  2017 FL        Florida    Davie     Census Tract    Prevent… 1216475… Choles…
# ℹ 10 more variables: Data_Value_Type <chr>, Data_Value <dbl>,
#   PopulationCount <dbl>, lat <dbl>, long <dbl>, CategoryID <chr>,
#   MeasureId <chr>, CityFIPS <dbl>, TractFIPS <dbl>, Short_Question_Text <chr>

The new dataset “Prevention” is a manageable dataset now.

For your assignment, work with the cleaned “Prevention” dataset

1. Once you run the above code, filter this dataset one more time for any particular subset.

Filter chunk here

#Filter data for the state of California and geographical level City
mydata <- prevention |>
  filter(StateAbbr=="CA")|>
  filter(GeographicLevel == "City")

head(mydata)
# A tibble: 6 × 18
   Year StateAbbr StateDesc  CityName  GeographicLevel Category UniqueID Measure
  <dbl> <chr>     <chr>      <chr>     <chr>           <chr>    <chr>    <chr>  
1  2017 CA        California Concord   City            Prevent… 616000   "Visit…
2  2017 CA        California Concord   City            Prevent… 616000   "Chole…
3  2017 CA        California Fontana   City            Prevent… 624680   "Visit…
4  2017 CA        California Stockton  City            Prevent… 675000   "Visit…
5  2017 CA        California Vacaville City            Prevent… 681554   "Curre…
6  2017 CA        California Alhambra  City            Prevent… 600884   "Curre…
# ℹ 10 more variables: Data_Value_Type <chr>, Data_Value <dbl>,
#   PopulationCount <dbl>, lat <dbl>, long <dbl>, CategoryID <chr>,
#   MeasureId <chr>, CityFIPS <dbl>, TractFIPS <dbl>, Short_Question_Text <chr>

2. Based on the GIS tutorial (Japan earthquakes), create one plot about something in your subsetted dataset.

First plot chunk here

ggplot(mydata, aes(lat))+
  geom_density() +
  theme_bw() +
  labs(title = "Density Distribution of Latitude in California",
       x = "Latitude",
       caption = "Source: http://www.cdc.gov/500cities/
") 

3. Now create a map of your subsetted dataset.

First map chunk here

cal_long <- -119.417931
cal_lat <- 36.778259
leaflet() |>
  setView(lng = cal_long, lat = cal_lat, zoom = 6) |>
  addProviderTiles("Esri.NatGeoWorldMap") |>
  addCircles(
    data = mydata,
    radius = mydata$PopulationCount/100,
    color = "brown",
    fillColor = "orange",
    fillOpacity = 0.5
  )
Assuming "long" and "lat" are longitude and latitude, respectively

4. Refine your map to include a mousover tooltip

#Popup creation

pop <- paste0(
      "<b>City: </b>", mydata$CityName, "<br>",
      "<b>City FIPS: </b>", mydata$CityFIPS, "<br>",
      "<b>Population Count: </b>", mydata$PopulationCount, "<br>",
      "<b>Latitude: </b>", mydata$lat, "<br>",
      "<b>Longitude: </b>", mydata$long, "<br>",
      "<b>Data Value: </b>", mydata$Data_Value, "<br>",
      "<b>Measure Id: </b>", mydata$MeasureId, "<br>",
      "<b>Short Question Text: </b>", mydata$Short_Question_Text, "<br>"
    )

Refined map chunk here

leaflet() |>
  setView(lng = cal_long, lat = cal_lat, zoom = 6) |>
  addProviderTiles("Esri.NatGeoWorldMap") |>
  addCircles(
    data = mydata,
    radius = mydata$PopulationCount/100,
    color = "brown",
    fillColor = "orange",
    fillOpacity = 0.5,
    #Add popup
    popup = pop
  )
Assuming "long" and "lat" are longitude and latitude, respectively

5. Write a paragraph

I have filtered the data to include only the state of California, at the geographical level of ‘City’. The density plot shows that most cities in California (in the subset) have latitudes around 34 or 38.

The largest circle on the Map represents Los Angeles, which has the highest population count in the dataset, followed by San Diego, San Jose, San Francisco, etc.