Healthy Cities GIS Assignment

Author

Aashka Navale

Load the libraries and set the working directory

library(tidyverse)
library(tidyr)
library(leaflet)
setwd("/Users/aashkanavale/Desktop/Montgomery College/MC Spring '24/DATA110/data sets")
cities500 <- read_csv("500CitiesLocalHealthIndicators.cdc.csv")

The GeoLocation variable has (lat, long) format

Split GeoLocation (lat, long) into two columns: lat and long

latlong <- cities500|>
  mutate(GeoLocation = str_replace_all(GeoLocation, "[()]", ""))|>
  separate(GeoLocation, into = c("Latitude", "Longitude"), sep = ",", convert = TRUE)
head(latlong)
# A tibble: 6 × 25
   Year StateAbbr StateDesc  CityName  GeographicLevel DataSource Category      
  <dbl> <chr>     <chr>      <chr>     <chr>           <chr>      <chr>         
1  2017 CA        California Hawthorne Census Tract    BRFSS      Health Outcom…
2  2017 CA        California Hawthorne City            BRFSS      Unhealthy Beh…
3  2017 CA        California Hayward   City            BRFSS      Health Outcom…
4  2017 CA        California Hayward   City            BRFSS      Unhealthy Beh…
5  2017 CA        California Hemet     City            BRFSS      Prevention    
6  2017 CA        California Indio     Census Tract    BRFSS      Health Outcom…
# ℹ 18 more variables: UniqueID <chr>, Measure <chr>, Data_Value_Unit <chr>,
#   DataValueTypeID <chr>, Data_Value_Type <chr>, Data_Value <dbl>,
#   Low_Confidence_Limit <dbl>, High_Confidence_Limit <dbl>,
#   Data_Value_Footnote_Symbol <chr>, Data_Value_Footnote <chr>,
#   PopulationCount <dbl>, Latitude <dbl>, Longitude <dbl>, CategoryID <chr>,
#   MeasureId <chr>, CityFIPS <dbl>, TractFIPS <dbl>, Short_Question_Text <chr>

Filter the dataset

Remove the StateDesc that includes the United Sates, select Prevention as the category (of interest), filter for only measuring crude prevalence and select only 2017.

latlong_clean <- latlong |>
  filter(StateDesc != "United States") |>
  filter(Category == "Prevention") |>
  filter(Data_Value_Type == "Crude prevalence") |>
  filter(Year == 2017)
head(latlong_clean)
# A tibble: 6 × 25
   Year StateAbbr StateDesc  CityName   GeographicLevel DataSource Category  
  <dbl> <chr>     <chr>      <chr>      <chr>           <chr>      <chr>     
1  2017 AL        Alabama    Montgomery City            BRFSS      Prevention
2  2017 CA        California Concord    City            BRFSS      Prevention
3  2017 CA        California Concord    City            BRFSS      Prevention
4  2017 CA        California Fontana    City            BRFSS      Prevention
5  2017 CA        California Richmond   Census Tract    BRFSS      Prevention
6  2017 FL        Florida    Davie      Census Tract    BRFSS      Prevention
# ℹ 18 more variables: UniqueID <chr>, Measure <chr>, Data_Value_Unit <chr>,
#   DataValueTypeID <chr>, Data_Value_Type <chr>, Data_Value <dbl>,
#   Low_Confidence_Limit <dbl>, High_Confidence_Limit <dbl>,
#   Data_Value_Footnote_Symbol <chr>, Data_Value_Footnote <chr>,
#   PopulationCount <dbl>, Latitude <dbl>, Longitude <dbl>, CategoryID <chr>,
#   MeasureId <chr>, CityFIPS <dbl>, TractFIPS <dbl>, Short_Question_Text <chr>

What variables are included? (can any of them be removed?)

names(latlong_clean)
 [1] "Year"                       "StateAbbr"                 
 [3] "StateDesc"                  "CityName"                  
 [5] "GeographicLevel"            "DataSource"                
 [7] "Category"                   "UniqueID"                  
 [9] "Measure"                    "Data_Value_Unit"           
[11] "DataValueTypeID"            "Data_Value_Type"           
[13] "Data_Value"                 "Low_Confidence_Limit"      
[15] "High_Confidence_Limit"      "Data_Value_Footnote_Symbol"
[17] "Data_Value_Footnote"        "PopulationCount"           
[19] "Latitude"                   "Longitude"                 
[21] "CategoryID"                 "MeasureId"                 
[23] "CityFIPS"                   "TractFIPS"                 
[25] "Short_Question_Text"       

Remove the variables that will not be used in the assignment

prevention <- latlong_clean |>
  select(-DataSource,-Data_Value_Unit, -DataValueTypeID, -Low_Confidence_Limit, -High_Confidence_Limit, -Data_Value_Footnote_Symbol, -Data_Value_Footnote)
head(prevention)
# A tibble: 6 × 18
   Year StateAbbr StateDesc  CityName  GeographicLevel Category UniqueID Measure
  <dbl> <chr>     <chr>      <chr>     <chr>           <chr>    <chr>    <chr>  
1  2017 AL        Alabama    Montgome… City            Prevent… 151000   Choles…
2  2017 CA        California Concord   City            Prevent… 616000   Visits…
3  2017 CA        California Concord   City            Prevent… 616000   Choles…
4  2017 CA        California Fontana   City            Prevent… 624680   Visits…
5  2017 CA        California Richmond  Census Tract    Prevent… 0660620… Choles…
6  2017 FL        Florida    Davie     Census Tract    Prevent… 1216475… Choles…
# ℹ 10 more variables: Data_Value_Type <chr>, Data_Value <dbl>,
#   PopulationCount <dbl>, Latitude <dbl>, Longitude <dbl>, CategoryID <chr>,
#   MeasureId <chr>, CityFIPS <dbl>, TractFIPS <dbl>, Short_Question_Text <chr>
# I chose Washington DC because it's a relevant 
dc <- prevention |>
  filter(StateAbbr %in% c("DC"))
head(dc)
# A tibble: 6 × 18
   Year StateAbbr StateDesc   CityName GeographicLevel Category UniqueID Measure
  <dbl> <chr>     <chr>       <chr>    <chr>           <chr>    <chr>    <chr>  
1  2017 DC        District o… Washing… Census Tract    Prevent… 1150000… Taking…
2  2017 DC        District o… Washing… Census Tract    Prevent… 1150000… Visits…
3  2017 DC        District o… Washing… Census Tract    Prevent… 1150000… Taking…
4  2017 DC        District o… Washing… Census Tract    Prevent… 1150000… Choles…
5  2017 DC        District o… Washing… Census Tract    Prevent… 1150000… Visits…
6  2017 DC        District o… Washing… Census Tract    Prevent… 1150000… Taking…
# ℹ 10 more variables: Data_Value_Type <chr>, Data_Value <dbl>,
#   PopulationCount <dbl>, Latitude <dbl>, Longitude <dbl>, CategoryID <chr>,
#   MeasureId <chr>, CityFIPS <dbl>, TractFIPS <dbl>, Short_Question_Text <chr>

The new dataset “Prevention” is a manageable dataset now.

For your assignment, work with the cleaned “Prevention” dataset

1. Once you run the above code, filter this dataset one more time for any particular subset.

I’m choosing to filter this dataset by Census Tract so it removes any “City” values.

dc2 <- dc |>
  filter(GeographicLevel == "Census Tract")
head(dc)
# A tibble: 6 × 18
   Year StateAbbr StateDesc   CityName GeographicLevel Category UniqueID Measure
  <dbl> <chr>     <chr>       <chr>    <chr>           <chr>    <chr>    <chr>  
1  2017 DC        District o… Washing… Census Tract    Prevent… 1150000… Taking…
2  2017 DC        District o… Washing… Census Tract    Prevent… 1150000… Visits…
3  2017 DC        District o… Washing… Census Tract    Prevent… 1150000… Taking…
4  2017 DC        District o… Washing… Census Tract    Prevent… 1150000… Choles…
5  2017 DC        District o… Washing… Census Tract    Prevent… 1150000… Visits…
6  2017 DC        District o… Washing… Census Tract    Prevent… 1150000… Taking…
# ℹ 10 more variables: Data_Value_Type <chr>, Data_Value <dbl>,
#   PopulationCount <dbl>, Latitude <dbl>, Longitude <dbl>, CategoryID <chr>,
#   MeasureId <chr>, CityFIPS <dbl>, TractFIPS <dbl>, Short_Question_Text <chr>

2. Based on the GIS tutorial (Japan earthquakes), create one plot about something in your subsetted dataset.

First plot chunk here:

# Creating a color palette
desiredcolors <- c("grey80", "azure4", "white", "grey30")

I decided to use the data_value variable as my x-axis because it represents the prevalence percentage. The y-axis is the population. I decided on coloring my points by the cities in Pennsylvania and shaped them by the measure taken.

I changed the transparency of the points and renamed my title, axes, and legends. Then I colored the points by the manual color palette I created above.

I got the next section from ChatGPT: I adjusted the value names for the Measure Taken legend to be a little bit more specific. Then I changed the theme of the graph to classic, filled the background to black, and changed the font of my chart.

plot <- dc2 |>
  ggplot(aes(x = Data_Value, y = PopulationCount, color = Short_Question_Text)) +
  geom_point() +
  labs(title = "Measures Taken in Washington DC",
       x = "Prevalence Percentage",
       y = "Population",
       color = "Measure Taken") +
  scale_color_manual(values = desiredcolors,
                     labels = c("Annual Checkup ≥ 18 y/o",
                                "Cholesterol Screening ≥ 18 y/o",
                                "Lack of Health Insurance 18 - 64 y/o",
                                "Taking High BP Medication ≥ 18 y/o")) +
  theme_classic() +
  theme(panel.background = element_rect(fill = "black")) +
  theme(text = element_text(family = "serif")) 
plot
Warning: Removed 4 rows containing missing values (`geom_point()`).

3. Now create a map of your subsetted dataset.

Here I’m using the package, leaflet. I set the longitude and latitude according to the coordinates of DC. I just pulled them from a quick Google search. Then I set the zoom to 11 since DC is so small and isn’t a state, the zoom needs to be much bigger. I set the theme of the chart to match my graph from above and made it dark. Then I plotted the points by Data_Value.

leaflet() |>
  setView(lng = -77.009056, lat = 38.889805, zoom = 11) |>
  addProviderTiles("CartoDB.DarkMatter") |>
  addCircles(data = dc2,
             radius = dc2$Data_Value)
Assuming "Longitude" and "Latitude" are longitude and latitude, respectively

4. Refine your map to include a mousover tooltip

Refined map chunk here

# Creating the popup chunk

dcpop <- paste0(
      "<b>Measure Taken: </b>", dc2$Short_Question_Text, "<br>",
      "<b>Prevalence Percentage: </b>", dc2$Data_Value, "<br>",
      "<b>Population Count: </b>", dc2$PopulationCount, "<br>")
# Plotting the same leaflet plot but with popups and refining the colors
leaflet() |>
  setView(lng = -77.009056, lat = 38.889805, zoom = 11) |>
  addProviderTiles("CartoDB.DarkMatter") |>
  addCircles(data = dc2,
             radius = dc2$Data_Value^10 / 100000000000000000, # Source : Emilio D.
             color = "white",
             fillColor = "black",
             popup = dcpop)
Assuming "Longitude" and "Latitude" are longitude and latitude, respectively

5. Reflection

In a paragraph, describe the plots you created and what they show.

I decided to create plots on only Washington DC. My first plot shows the relationship between population and prevalence percentage, but also sorted by each measure taken. The lack of health insurance is the one measure taken that has the least prevalence. Then I created an interactive leaflet graph and set the radius to the prevalence percentage. Each point on the chart represents a different instance that has happened in 2017 in Washington DC. Each popup has the Measure Taken, the exact Prevalence Percentage, and the Population Count at that time in that year.