Loading cars data set

summary(cars)
##      speed           dist       
##  Min.   : 4.0   Min.   :  2.00  
##  1st Qu.:12.0   1st Qu.: 26.00  
##  Median :15.0   Median : 36.00  
##  Mean   :15.4   Mean   : 42.98  
##  3rd Qu.:19.0   3rd Qu.: 56.00  
##  Max.   :25.0   Max.   :120.00
cars_data = cars

head(cars_data)
##   speed dist
## 1     4    2
## 2     4   10
## 3     7    4
## 4     7   22
## 5     8   16
## 6     9   10

Building a Linear Model for stopping distance as a function of speed

#the linear model
model <- lm(dist ~ speed, data=cars_data)

#Summarizing the model to get the coefficients and other statistics
summary(model)
## 
## Call:
## lm(formula = dist ~ speed, data = cars_data)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -29.069  -9.525  -2.272   9.215  43.201 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept) -17.5791     6.7584  -2.601   0.0123 *  
## speed         3.9324     0.4155   9.464 1.49e-12 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 15.38 on 48 degrees of freedom
## Multiple R-squared:  0.6511, Adjusted R-squared:  0.6438 
## F-statistic: 89.57 on 1 and 48 DF,  p-value: 1.49e-12
# Plotting the data and the linear model
plot(cars_data$speed, cars_data$dist, main="Stopping Distance as a Function of Speed", xlab="Speed", ylab="Stopping Distance")
abline(model, col="red")

Quality evaluation of the model, and Analyzing Residual

qqnorm(resid(model))
qqline(resid(model))

library(car)
## Loading required package: carData
# Checking for linearity and homoscedasticity visually
plot(model, which=1) # Residuals vs Fitted

plot(model, which=3) # Scale-Location (also for checking homoscedasticity)

# Residual Analysis
par(mfrow=c(2,2)) 
plot(model) 

# Normality of residuals
hist(residuals(model), breaks=10, main="Histogram of Residuals", xlab="Residuals") # Histogram of residuals
shapiro.test(residuals(model)) # Shapiro-Wilk test for normality
## 
##  Shapiro-Wilk normality test
## 
## data:  residuals(model)
## W = 0.94509, p-value = 0.02152
# Independence of residuals
durbinWatsonTest(model) 
##  lag Autocorrelation D-W Statistic p-value
##    1       0.1604322      1.676225   0.216
##  Alternative hypothesis: rho != 0