library(kableExtra)
library(ggplot2)
library(dplyr)
##
## Attaching package: 'dplyr'
## The following object is masked from 'package:kableExtra':
##
## group_rows
## The following objects are masked from 'package:stats':
##
## filter, lag
## The following objects are masked from 'package:base':
##
## intersect, setdiff, setequal, union
library(tidyverse)
## ── Attaching core tidyverse packages ──────────────────────── tidyverse 2.0.0 ──
## ✔ forcats 1.0.0 ✔ stringr 1.5.1
## ✔ lubridate 1.9.3 ✔ tibble 3.2.1
## ✔ purrr 1.0.2 ✔ tidyr 1.3.1
## ✔ readr 2.1.5
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## ✖ dplyr::filter() masks stats::filter()
## ✖ dplyr::group_rows() masks kableExtra::group_rows()
## ✖ dplyr::lag() masks stats::lag()
## ℹ Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors
library(doBy)
##
## Attaching package: 'doBy'
##
## The following object is masked from 'package:dplyr':
##
## order_by
library(knitr)
library(kableExtra)
datos <- read.csv2("Base_datos_Fibrosis.csv")
dato_por_genero <- datos %>%
group_by(genero) %>%
count() %>%
ungroup() %>%
mutate(Porcentaje = n / sum(n)) %>%
arrange(Porcentaje) %>%
mutate(etiquetas = scales::percent(Porcentaje))
colors <- c("lightgreen", "#DEB7D9")
ggplot(dato_por_genero, aes(x = "", y = Porcentaje, fill = genero)) +
geom_col(color = "black") +
geom_label(aes(label = etiquetas),
position = position_stack(vjust = 0.5),
show.legend = FALSE) +
scale_fill_manual(values = colors) +
guides(fill = guide_legend(title = "Cantidad de sujetos según género")) +
coord_polar(theta = "y") +
ggtitle("")

print(dato_por_genero)
## # A tibble: 2 × 4
## genero n Porcentaje etiquetas
## <chr> <int> <dbl> <chr>
## 1 Mujer 150 0.464 46.4%
## 2 Hombre 173 0.536 53.6%
# Datos numéricos
datos_numericos <- datos[, c("Glucemia", "Urea", "Creatinina", "Colesterol", "Triglicéridos",
"GOT", "GPT", "GGT", "Fosfatasa.Alcalina", "bilirrubina.total",
"proteínas.totales", "albúmina", "sodio", "potasio",
"leucocitos", "hematocrito", "plaquetas", "Índice.de.Quick",
"fibrinógeno")]
# Resumen estadístico
kable(summary(datos_numericos), caption = "Resumen estadístico de datos numéricos")
Resumen estadístico de datos numéricos
|
Min. : 14.0 |
Min. : 11.00 |
Min. :0.400 |
Min. : 20.0 |
Min. : 7.5 |
Min. : 13.00 |
Min. : 16.0 |
Min. : 12.0 |
Min. : 27.0 |
Min. :0.230 |
Min. :4.600 |
Min. :2.600 |
Min. :128.0 |
Min. :3.400 |
Min. : 1700 |
Min. :24.00 |
Min. : 10000 |
Min. : 45.00 |
Min. :123.0 |
|
1st Qu.: 88.0 |
1st Qu.: 23.50 |
1st Qu.:0.900 |
1st Qu.:158.5 |
1st Qu.:104.0 |
1st Qu.: 36.50 |
1st Qu.: 50.0 |
1st Qu.: 35.0 |
1st Qu.: 71.0 |
1st Qu.:0.700 |
1st Qu.:6.800 |
1st Qu.:4.000 |
1st Qu.:138.0 |
1st Qu.:4.200 |
1st Qu.: 4015 |
1st Qu.:38.00 |
1st Qu.:108000 |
1st Qu.: 96.00 |
1st Qu.:227.0 |
|
Median :101.0 |
Median : 31.00 |
Median :1.100 |
Median :180.0 |
Median :136.0 |
Median : 56.00 |
Median : 82.0 |
Median : 67.0 |
Median : 95.0 |
Median :1.000 |
Median :7.100 |
Median :4.300 |
Median :140.0 |
Median :4.500 |
Median : 5450 |
Median :41.00 |
Median :139000 |
Median :100.00 |
Median :270.5 |
|
Mean :112.2 |
Mean : 35.16 |
Mean :1.185 |
Mean :181.6 |
Mean :158.3 |
Mean : 88.52 |
Mean :118.8 |
Mean : 116.3 |
Mean :105.6 |
Mean :1.148 |
Mean :7.136 |
Mean :4.236 |
Mean :139.7 |
Mean :4.536 |
Mean : 5571 |
Mean :41.28 |
Mean :141053 |
Mean : 96.01 |
Mean :275.7 |
|
3rd Qu.:122.5 |
3rd Qu.: 43.00 |
3rd Qu.:1.390 |
3rd Qu.:204.0 |
3rd Qu.:190.0 |
3rd Qu.:107.50 |
3rd Qu.:138.0 |
3rd Qu.: 134.5 |
3rd Qu.:122.5 |
3rd Qu.:1.300 |
3rd Qu.:7.500 |
3rd Qu.:4.500 |
3rd Qu.:141.0 |
3rd Qu.:4.800 |
3rd Qu.: 6770 |
3rd Qu.:44.50 |
3rd Qu.:169000 |
3rd Qu.:100.00 |
3rd Qu.:313.0 |
|
Max. :352.0 |
Max. :174.00 |
Max. :9.400 |
Max. :337.0 |
Max. :591.0 |
Max. :752.00 |
Max. :766.0 |
Max. :1884.0 |
Max. :492.0 |
Max. :8.300 |
Max. :9.100 |
Max. :7.700 |
Max. :150.0 |
Max. :6.000 |
Max. :12640 |
Max. :57.00 |
Max. :297000 |
Max. :118.00 |
Max. :610.0 |
|
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA’s :1 |
# Calcular la frecuencia de cada combinación de género y fibrosis
frecuencia_genero_fibrosis <- table(datos$fibrosis, datos$genero)
# Convertir los resultados en un data frame para facilitar el manejo
frecuencia_df <- as.data.frame(frecuencia_genero_fibrosis)
colnames(frecuencia_df) <- c("Fibrosis", "Genero", "Cantidad")
# Graficar con etiquetas de valores
ggplot(frecuencia_df, aes(x = Fibrosis, y = Cantidad, fill = Genero)) +
geom_bar(stat = "identity", position = "dodge") +
geom_text(aes(label = Cantidad),
position = position_dodge(width = 0.9),
vjust = -0.5,
size = 3,
color = "black") +
labs(x = "Fibrosis", y = "Cantidad", fill = "Género",
title = "Distribución de género en cada categoría de fibrosis") +
theme_minimal()

generar_grafico_barras <- function(datos, variable, agrupacion1, agrupacion2, etiquetas_x = NULL, etiquetas_y = NULL, etiquetas_fill = NULL, titulo = NULL) {
promedio_variable <- datos %>%
group_by({{ agrupacion1 }}, {{ agrupacion2 }}) %>%
summarize(promedio_variable = mean({{ variable }}, na.rm = TRUE))
plot <- ggplot(promedio_variable, aes(x = promedio_variable, y = {{ agrupacion1 }}, fill = {{ agrupacion2 }})) +
geom_bar(stat = "identity", position = "dodge") +
geom_text(aes(label = round(promedio_variable, 2)), position = position_dodge(width = 0.9), vjust = 0.5, hjust = 1) +
labs(x = ifelse(is.null(etiquetas_x), "Promedio de Variable", etiquetas_x),
y = ifelse(is.null(etiquetas_y), "Fibrosis", etiquetas_y),
fill = ifelse(is.null(etiquetas_fill), "Género", etiquetas_fill),
title = ifelse(is.null(titulo), paste("Promedio de", deparse(substitute(variable)), "por Categoría de Fibrosis y Genéro"), titulo)) +
theme_minimal()
return(plot)
}
#Barras promedio para Glucemia
grafico <- generar_grafico_barras(datos, Glucemia, fibrosis, genero)
## `summarise()` has grouped output by 'fibrosis'. You can override using the
## `.groups` argument.
print(grafico)

#Barras promedio para Urea
grafico <- generar_grafico_barras(datos, Urea, fibrosis, genero)
## `summarise()` has grouped output by 'fibrosis'. You can override using the
## `.groups` argument.
print(grafico)

#Barras promedio para Creatinina
grafico <- generar_grafico_barras(datos, Creatinina, fibrosis, genero)
## `summarise()` has grouped output by 'fibrosis'. You can override using the
## `.groups` argument.
print(grafico)

#Barras promedio para Colesterol
grafico <- generar_grafico_barras(datos, Colesterol, fibrosis, genero)
## `summarise()` has grouped output by 'fibrosis'. You can override using the
## `.groups` argument.
print(grafico)

#Barras promedio para Triglicéridos
grafico <- generar_grafico_barras(datos, Triglicéridos, fibrosis, genero)
## `summarise()` has grouped output by 'fibrosis'. You can override using the
## `.groups` argument.
print(grafico)

#Barras promedio para GOT
grafico <- generar_grafico_barras(datos, GOT, fibrosis, genero)
## `summarise()` has grouped output by 'fibrosis'. You can override using the
## `.groups` argument.
print(grafico)

#Barras promedio para GPT
grafico <- generar_grafico_barras(datos,GPT, fibrosis, genero)
## `summarise()` has grouped output by 'fibrosis'. You can override using the
## `.groups` argument.
print(grafico)

#Barras promedio para GGT
grafico <- generar_grafico_barras(datos, GGT, fibrosis, genero)
## `summarise()` has grouped output by 'fibrosis'. You can override using the
## `.groups` argument.
print(grafico)

#Barras promedio para Fosfatasa Alcalina
grafico <- generar_grafico_barras(datos, Fosfatasa.Alcalina, fibrosis, genero)
## `summarise()` has grouped output by 'fibrosis'. You can override using the
## `.groups` argument.
print(grafico)

#Barras promedio para bilirrubina.total
grafico <- generar_grafico_barras(datos, bilirrubina.total, fibrosis, genero)
## `summarise()` has grouped output by 'fibrosis'. You can override using the
## `.groups` argument.
print(grafico)

#Barras promedio para proteínas.totales
grafico <- generar_grafico_barras(datos, proteínas.totales, fibrosis, genero)
## `summarise()` has grouped output by 'fibrosis'. You can override using the
## `.groups` argument.
print(grafico)

#Barras promedio para albúmina
grafico <- generar_grafico_barras(datos, albúmina, fibrosis, genero)
## `summarise()` has grouped output by 'fibrosis'. You can override using the
## `.groups` argument.
print(grafico)

#Barras promedio para sodio
grafico <- generar_grafico_barras(datos, sodio, fibrosis, genero)
## `summarise()` has grouped output by 'fibrosis'. You can override using the
## `.groups` argument.
print(grafico)

#Barras promedio para potasio
grafico <- generar_grafico_barras(datos, potasio, fibrosis, genero)
## `summarise()` has grouped output by 'fibrosis'. You can override using the
## `.groups` argument.
print(grafico)

#Barras promedio para leucocitos
grafico <- generar_grafico_barras(datos, leucocitos, fibrosis, genero)
## `summarise()` has grouped output by 'fibrosis'. You can override using the
## `.groups` argument.
print(grafico)

#Barras promedio para hematocrito
grafico <- generar_grafico_barras(datos, hematocrito, fibrosis, genero)
## `summarise()` has grouped output by 'fibrosis'. You can override using the
## `.groups` argument.
print(grafico)

#Barras promedio para plaquetas
grafico <- generar_grafico_barras(datos, plaquetas, fibrosis, genero)
## `summarise()` has grouped output by 'fibrosis'. You can override using the
## `.groups` argument.
print(grafico)

#Barras promedio para Índice.de.Quick
grafico <- generar_grafico_barras(datos, Índice.de.Quick, fibrosis, genero)
## `summarise()` has grouped output by 'fibrosis'. You can override using the
## `.groups` argument.
print(grafico)

#Barras promedio para fibrinógeno
grafico <- generar_grafico_barras(datos, fibrinógeno, fibrosis, genero)
## `summarise()` has grouped output by 'fibrosis'. You can override using the
## `.groups` argument.
print(grafico)

#promedio de Glucemia
promedio_variable <- datos %>%
group_by(fibrosis) %>%
summarize(promedio_variable = mean(Glucemia, na.rm = TRUE))
#Gráfico
ggplot(promedio_variable, aes(x = fibrosis, y = promedio_variable, fill = fibrosis)) +
geom_col() +
geom_text(aes(label = round(promedio_variable, 2)), vjust = -0.5, hjust = 0.5, color = "black", size = 3) +
labs(x = "Fibrosis", y = "Promedio de Glucemia",
title = "Promedio de Glucemia por Categoría de Fibrosis") +
theme_minimal()

#promedio de Urea
promedio_Urea <- datos %>%
group_by(fibrosis) %>%
summarize(promedio_Urea = mean(Urea, na.rm = TRUE))
#Gráfico
ggplot(promedio_Urea, aes(x = fibrosis, y = promedio_Urea, fill = fibrosis)) +
geom_col() +
geom_text(aes(label = round(promedio_Urea, 2)), vjust = -0.5, hjust = 0.5, color = "black", size = 3) +
labs(x = "Fibrosis", y = "Promedio de Urea",
title = "Promedio de Urea por Categoría de Fibrosis") +
theme_minimal()

#promedio de Creatinina
promedio_variable <- datos %>%
group_by(fibrosis) %>%
summarize(promedio_variable = mean(Creatinina, na.rm = TRUE))
#Gráfico
ggplot(promedio_variable, aes(x = fibrosis, y = promedio_variable, fill = fibrosis)) +
geom_col() +
geom_text(aes(label = round(promedio_variable, 2)), vjust = -0.5, hjust = 0.5, color = "black", size = 3) +
labs(x = "Fibrosis", y = "Promedio de Creatinina",
title = "Promedio de Creatinina por Categoría de Fibrosis") +
theme_minimal()

#promedio de Colesterol
promedio_variable <- datos %>%
group_by(fibrosis) %>%
summarize(promedio_variable = mean(Colesterol, na.rm = TRUE))
#Gráfico
ggplot(promedio_variable, aes(x = fibrosis, y = promedio_variable, fill = fibrosis)) +
geom_col() +
geom_text(aes(label = round(promedio_variable, 2)), vjust = -0.5, hjust = 0.5, color = "black", size = 3) +
labs(x = "Fibrosis", y = "Promedio de Colesterol",
title = "Promedio de Colesterol por Categoría de Fibrosis") +
theme_minimal()

#promedio de Triglicéridos
promedio_variable <- datos %>%
group_by(fibrosis) %>%
summarize(promedio_variable = mean(Triglicéridos, na.rm = TRUE))
#Gráfico
ggplot(promedio_variable, aes(x = fibrosis, y = promedio_variable, fill = fibrosis)) +
geom_col() +
geom_text(aes(label = round(promedio_variable, 2)), vjust = -0.5, hjust = 0.5, color = "black", size = 3) +
labs(x = "Fibrosis", y = "Promedio de Triglicéridos",
title = "Promedio de Triglicéridos por Categoría de Fibrosis") +
theme_minimal()

#promedio GOT
promedio_variable <- datos %>%
group_by(fibrosis) %>%
summarize(promedio_variable = mean(GOT, na.rm = TRUE))
#Gráfico
ggplot(promedio_variable, aes(x = fibrosis, y = promedio_variable, fill = fibrosis)) +
geom_col() +
geom_text(aes(label = round(promedio_variable, 2)), vjust = -0.5, hjust = 0.5, color = "black", size = 3) +
labs(x = "Fibrosis", y = "Promedio de GOT",
title = "Promedio de GOT por Categoría de Fibrosis") +
theme_minimal()

#promedio GPT
promedio_variable <- datos %>%
group_by(fibrosis) %>%
summarize(promedio_variable = mean(GPT, na.rm = TRUE))
#Gráfico
ggplot(promedio_variable, aes(x = fibrosis, y = promedio_variable, fill = fibrosis)) +
geom_col() +
geom_text(aes(label = round(promedio_variable, 2)), vjust = -0.5, hjust = 0.5, color = "black", size = 3) +
labs(x = "Fibrosis", y = "Promedio de GPT",
title = "Promedio de GPT por Categoría de Fibrosis") +
theme_minimal()

#promedio GGT
promedio_variable <- datos %>%
group_by(fibrosis) %>%
summarize(promedio_variable = mean(GGT, na.rm = TRUE))
#Gráfico
ggplot(promedio_variable, aes(x = fibrosis, y = promedio_variable, fill = fibrosis)) +
geom_col() +
geom_text(aes(label = round(promedio_variable, 2)), vjust = -0.5, hjust = 0.5, color = "black", size = 3) +
labs(x = "Fibrosis", y = "Promedio de GGT",
title = "Promedio de GGT por Categoría de Fibrosis") +
theme_minimal()

#promedio Fosfatasa Alcalina
promedio_variable <- datos %>%
group_by(fibrosis) %>%
summarize(promedio_variable = mean(Fosfatasa.Alcalina, na.rm = TRUE))
#Gráfico
ggplot(promedio_variable, aes(x = fibrosis, y = promedio_variable, fill = fibrosis)) +
geom_col() +
geom_text(aes(label = round(promedio_variable, 2)), vjust = -0.5, hjust = 0.5, color = "black", size = 3) +
labs(x = "Fibrosis", y = "Promedio de Fosfatasa Alcalina",
title = "Promedio de Fosfatasa Alcalina por Categoría de Fibrosis") +
theme_minimal()

#promedio Bilirrubina total
promedio_variable <- datos %>%
group_by(fibrosis) %>%
summarize(promedio_variable = mean(bilirrubina.total, na.rm = TRUE))
#Gráfico
ggplot(promedio_variable, aes(x = fibrosis, y = promedio_variable, fill = fibrosis)) +
geom_col() +
geom_text(aes(label = round(promedio_variable, 2)), vjust = -0.5, hjust = 0.5, color = "black", size = 3) +
labs(x = "Fibrosis", y = "Promedio de Bilirrubina Total",
title = "Promedio de Bilirrubina Total por Categoría de Fibrosis") +
theme_minimal()

#promedio proteínas totales
promedio_variable <- datos %>%
group_by(fibrosis) %>%
summarize(promedio_variable = mean(proteínas.totales, na.rm = TRUE))
#Gráfico
ggplot(promedio_variable, aes(x = fibrosis, y = promedio_variable, fill = fibrosis)) +
geom_col() +
geom_text(aes(label = round(promedio_variable, 2)), vjust = -0.5, hjust = 0.5, color = "black", size = 3) +
labs(x = "Fibrosis", y = "Promedio de Proteínas totales ",
title = "Promedio de Proteínas totales por Categoría de Fibrosis") +
theme_minimal()

#promedio albúmina
promedio_variable <- datos %>%
group_by(fibrosis) %>%
summarize(promedio_variable = mean(albúmina, na.rm = TRUE))
#Gráfico
ggplot(promedio_variable, aes(x = fibrosis, y = promedio_variable, fill = fibrosis)) +
geom_col() +
geom_text(aes(label = round(promedio_variable, 2)), vjust = -0.5, hjust = 0.5, color = "black", size = 3) +
labs(x = "Fibrosis", y = "Promedio de Albúmia",
title = "Promedio de Albúmia por Categoría de Fibrosis") +
theme_minimal()

#promedio sodio
promedio_variable <- datos %>%
group_by(fibrosis) %>%
summarize(promedio_variable = mean(sodio, na.rm = TRUE))
#Gráfico
ggplot(promedio_variable, aes(x = fibrosis, y = promedio_variable, fill = fibrosis)) +
geom_col() +
geom_text(aes(label = round(promedio_variable, 2)), vjust = -0.5, hjust = 0.5, color = "black", size = 3) +
labs(x = "Fibrosis", y = "Promedio de Sodio",
title = "Promedio de Sodio por Categoría de Fibrosis") +
theme_minimal()

#promedio potasio
promedio_variable <- datos %>%
group_by(fibrosis) %>%
summarize(promedio_variable = mean(potasio, na.rm = TRUE))
#Gráfico
ggplot(promedio_variable, aes(x = fibrosis, y = promedio_variable, fill = fibrosis)) +
geom_col() +
geom_text(aes(label = round(promedio_variable, 2)), vjust = -0.5, hjust = 0.5, color = "black", size = 3) +
labs(x = "Fibrosis", y = "Promedio de Potasio",
title = "Promedio de Potasio por Categoría de Fibrosis") +
theme_minimal()

#promedio leucocitos
promedio_variable <- datos %>%
group_by(fibrosis) %>%
summarize(promedio_variable = mean(leucocitos, na.rm = TRUE))
#Gráfico
ggplot(promedio_variable, aes(x = fibrosis, y = promedio_variable, fill = fibrosis)) +
geom_col() +
geom_text(aes(label = round(promedio_variable, 2)), vjust = -0.5, hjust = 0.5, color = "black", size = 3) +
labs(x = "Fibrosis", y = "Promedio de Leucocitos",
title = "Promedio de Leucocitos por Categoría de Fibrosis") +
theme_minimal()

#promedio hematocrito
promedio_variable <- datos %>%
group_by(fibrosis) %>%
summarize(promedio_variable = mean(hematocrito, na.rm = TRUE))
#Gráfico
ggplot(promedio_variable, aes(x = fibrosis, y = promedio_variable, fill = fibrosis)) +
geom_col() +
geom_text(aes(label = round(promedio_variable, 2)), vjust = -0.5, hjust = 0.5, color = "black", size = 3) +
labs(x = "Fibrosis", y = "Promedio de Hematocrito",
title = "Promedio de Hematocrito por Categoría de Fibrosis") +
theme_minimal()

#promedio plaquetas
promedio_variable <- datos %>%
group_by(fibrosis) %>%
summarize(promedio_variable = mean(plaquetas, na.rm = TRUE))
#Gráfico
ggplot(promedio_variable, aes(x = fibrosis, y = promedio_variable, fill = fibrosis)) +
geom_col() +
geom_text(aes(label = round(promedio_variable, 2)), vjust = -0.5, hjust = 0.5, color = "black", size = 3) +
labs(x = "Fibrosis", y = "Promedio de Plaquetas",
title = "Promedio de Plaquetas por Categoría de Fibrosis") +
theme_minimal()

#promedio Índice.de.Quick
promedio_variable <- datos %>%
group_by(fibrosis) %>%
summarize(promedio_variable = mean(Índice.de.Quick, na.rm = TRUE))
#Gráfico
ggplot(promedio_variable, aes(x = fibrosis, y = promedio_variable, fill = fibrosis)) +
geom_col() +
geom_text(aes(label = round(promedio_variable, 2)), vjust = -0.5, hjust = 0.5, color = "black", size = 3) +
labs(x = "Fibrosis", y = "Promedio de Índice.de.Quick",
title = "Promedio de Índice de Quick por Categoría de Fibrosis") +
theme_minimal()

#promedio fibrinógeno
promedio_variable <- datos %>%
group_by(fibrosis) %>%
summarize(promedio_variable = mean(fibrinógeno, na.rm = TRUE))
#Gráfico
ggplot(promedio_variable, aes(x = fibrosis, y = promedio_variable, fill = fibrosis)) +
geom_col() +
geom_text(aes(label = round(promedio_variable, 2)), vjust = -0.5, hjust = 0.5, color = "black", size = 3) +
labs(x = "Fibrosis", y = "Promedio de Fibrinógeno",
title = "Promedio de Fibrinógeno por Categoría de Fibrosis") +
theme_minimal()

compute_summary_stats <- function(data, group_var, target_var) {
summary_stats <- data %>%
group_by({{ group_var }}) %>%
summarize(
Q1 = quantile({{ target_var }}, 0.25),
median = median({{ target_var }}),
Q3 = quantile({{ target_var }}, 0.75),
min = min({{ target_var }}),
max = max({{ target_var }}),
outliers = list(boxplot.stats({{ target_var }})$out)
)
# Convertir los valores atípicos en texto
summary_stats$outliers <- sapply(summary_stats$outliers, function(x) paste(x, collapse = ", "))
return(summary_stats)
}
#boxplot
ggplot(datos, aes(x = fibrosis, y = Glucemia)) +
geom_boxplot(fill = "skyblue", color = "blue") +
labs(x = "Fibrosis Hepática", y = "Glucemia") +
ggtitle("Boxplot de Glucemia según Fibrosis")

variable <- "Glucemia"
summary_stats <- compute_summary_stats(datos, fibrosis, !!as.name(variable))
kable(summary_stats, caption = "Resumen Glucemia")
Resumen Glucemia
| ausencia |
90.00 |
102.0 |
122.00 |
69 |
290 |
290, 228, 172, 205, 226, 181, 218, 271, 192, 235, 237,
177, 203, 204 |
| importante |
84.50 |
120.5 |
133.00 |
14 |
352 |
317, 352 |
| leve |
86.00 |
101.0 |
121.00 |
45 |
280 |
280, 260, 176, 192, 211, 225, 190 |
| moderada |
87.75 |
96.5 |
117.25 |
68 |
162 |
|
#boxplot
ggplot(datos, aes(x = fibrosis, y = Urea)) +
geom_boxplot(fill = "skyblue", color = "blue") +
labs(x = "Fibrosis Hepática", y = "Urea") +
ggtitle("Boxplot de Urea según Fibrosis")

variable <- "Urea"
summary_stats <- compute_summary_stats(datos, fibrosis, !!as.name(variable))
kable(summary_stats, caption = "Resumen Urea")
Resumen Urea
| ausencia |
25.00 |
33.0 |
45.00 |
12 |
84 |
84 |
| importante |
21.75 |
26.5 |
34.00 |
18 |
58 |
58 |
| leve |
22.25 |
29.0 |
43.00 |
13 |
174 |
87, 174 |
| moderada |
22.00 |
29.0 |
45.25 |
11 |
106 |
106, 89 |
#boxplot
ggplot(datos, aes(x = fibrosis, y = Creatinina)) +
geom_boxplot(fill = "skyblue", color = "blue") +
labs(x = "Fibrosis", y = "Creatinina") +
ggtitle("Boxplot de Creatinina según Fibrosis")

variable <- "Creatinina"
summary_stats <- compute_summary_stats(datos, fibrosis, !!as.name(variable))
kable(summary_stats, caption = "Resumen Creatinina")
Resumen Creatinina
| ausencia |
1.000 |
1.200 |
1.500 |
0.40 |
4.3 |
3, 2.5, 2.8, 4.3, 2.3 |
| importante |
0.875 |
1.040 |
1.225 |
0.60 |
1.7 |
|
| leve |
0.800 |
1.055 |
1.200 |
0.50 |
9.4 |
1.9, 9.4, 1.8, 2 |
| moderada |
0.860 |
1.000 |
1.200 |
0.49 |
2.2 |
2.2, 2, 1.8 |
``
#boxplot
ggplot(datos, aes(x = fibrosis, y = Colesterol))+
geom_boxplot(fill = "skyblue", color = "blue") +
labs(x = "Fibrosis", y = "Colesterol") +
ggtitle("Boxplot de Colesterol según Fibrosis")

variable <- "Colesterol"
summary_stats <- compute_summary_stats(datos, fibrosis, !!as.name(variable))
kable(summary_stats, caption = "Resumen Colesterol")
Resumen Colesterol
| ausencia |
162.00 |
184.0 |
202.00 |
20 |
337 |
20, 337, 264, 85, 296, 88 |
| importante |
135.25 |
172.0 |
179.50 |
92 |
245 |
|
| leve |
161.00 |
182.5 |
208.75 |
82 |
316 |
291, 316, 82 |
| moderada |
148.25 |
174.0 |
203.00 |
88 |
270 |
|
``
#boxplot
ggplot(datos, aes(x = fibrosis, y = Triglicéridos))+
geom_boxplot(fill = "skyblue", color = "blue") +
labs(x = "Fibrosis", y = "Triglicéridos") +
ggtitle("Boxplot de Triglicéridos según Fibrosis")

variable <- "Triglicéridos"
summary_stats <- compute_summary_stats(datos, fibrosis, !!as.name(variable))
kable(summary_stats, caption = "Resumen Triglicéridos")
Resumen Triglicéridos
| ausencia |
106.00 |
134 |
199.00 |
49.0 |
591 |
343, 591, 427, 447, 344 |
| importante |
131.75 |
160 |
194.00 |
50.0 |
448 |
428, 448 |
| leve |
102.25 |
125 |
181.00 |
7.5 |
465 |
465, 351, 419, 365, 375, 326 |
| moderada |
99.25 |
152 |
204.75 |
56.0 |
344 |
|
``
#boxplot
ggplot(datos, aes(x = fibrosis, y = GOT)) +
geom_boxplot(fill = "skyblue", color = "blue") +
labs(x = "Fibrosis", y = "GOT") +
ggtitle("Boxplot de GOT según Fibrosis")

variable <- "GOT"
summary_stats <- compute_summary_stats(datos, fibrosis, !!as.name(variable))
kable(summary_stats, caption = "Resumen GOT")
Resumen GOT
| ausencia |
27.0 |
40.0 |
64.00 |
13 |
309 |
173, 136, 217, 120, 195, 139, 309, 144, 208, 130, 172,
136 |
| importante |
79.5 |
116.5 |
156.00 |
40 |
524 |
313, 524, 360 |
| leve |
44.5 |
62.5 |
116.75 |
13 |
331 |
331, 239, 241, 228 |
| moderada |
53.0 |
102.5 |
184.25 |
21 |
752 |
752, 407, 518, 583, 572 |
``
#boxplot
ggplot(datos, aes(x = fibrosis, y = GPT )) +
geom_boxplot(fill = "skyblue", color = "blue") +
labs(x = "Fibrosis", y = "GPT") +
ggtitle("Boxplot de GPT según Fibrosis")

variable <- "GPT"
summary_stats <- compute_summary_stats(datos, fibrosis, !!as.name(variable))
kable(summary_stats, caption = "Resumen GPT")
Resumen GPT
| ausencia |
36.00 |
60.0 |
97.00 |
19 |
350 |
202, 350, 226, 283, 315, 283, 309, 347, 278, 245 |
| importante |
106.25 |
143.0 |
236.75 |
31 |
589 |
589, 479 |
| leve |
60.75 |
95.5 |
149.50 |
16 |
568 |
568, 295, 446, 446, 328, 311, 337, 296, 358, 374 |
| moderada |
66.75 |
116.5 |
255.25 |
20 |
766 |
596, 766, 570 |
``
#boxplot
ggplot(datos, aes(x = fibrosis, y = GGT)) +
geom_boxplot(fill = "skyblue", color = "blue") +
labs(x = "Fibrosis", y = "GGT") +
ggtitle("Boxplot de GGT según Fibrosis")

variable <- "GGT"
summary_stats <- compute_summary_stats(datos, fibrosis, !!as.name(variable))
kable(summary_stats, caption = "Resumen GGT")
Resumen GGT
| ausencia |
31.00 |
57.0 |
91.00 |
13 |
696 |
315, 411, 296, 188, 368, 351, 182, 355, 369, 696, 379,
272 |
| importante |
51.25 |
73.5 |
122.75 |
19 |
176 |
|
| leve |
45.25 |
85.5 |
179.75 |
14 |
1884 |
807, 524, 719, 477, 1884, 531, 428, 642, 383, 423,
467 |
| moderada |
34.00 |
93.0 |
179.00 |
12 |
628 |
415, 628 |
#boxplot
ggplot(datos, aes(x = fibrosis, y = Fosfatasa.Alcalina)) +
geom_boxplot(fill = "skyblue", color = "blue") +
labs(x = "Fibrosis", y = "Fosfatasa Alcalina") +
ggtitle("Boxplot de Fosfatasa Alcalina según Fibrosis")

variable <- "Fosfatasa.Alcalina"
summary_stats <- compute_summary_stats(datos, fibrosis, !!as.name(variable))
kable(summary_stats, caption = "Resumen Fosfatasa Alcalina")
Resumen Fosfatasa Alcalina
| ausencia |
67.0 |
83.0 |
110.00 |
32 |
492 |
190, 182, 258, 236, 492, 182, 350 |
| importante |
97.5 |
109.0 |
151.75 |
63 |
213 |
|
| leve |
72.5 |
97.5 |
129.50 |
27 |
414 |
318, 275, 284, 414, 248, 243 |
| moderada |
76.5 |
101.5 |
130.50 |
48 |
260 |
260, 236, 231 |
#boxplot
ggplot(datos, aes(x = fibrosis, y = bilirrubina.total)) +
geom_boxplot(fill = "skyblue", color = "blue") +
labs(x = "Fibrosis", y = "Bilirrubina Total") +
ggtitle("Boxplot de Bilirrubina Total según Fibrosis")

variable <- "bilirrubina.total"
summary_stats <- compute_summary_stats(datos, fibrosis, !!as.name(variable))
kable(summary_stats, caption = "Resumen Bilirrubina Total")
Resumen Bilirrubina Total
| ausencia |
0.700 |
0.92 |
1.2000 |
0.30 |
3.2 |
2, 2, 3.2, 3.1 |
| importante |
0.700 |
1.00 |
1.5975 |
0.50 |
4.0 |
3.8, 4, 3.9 |
| leve |
0.700 |
1.00 |
1.4000 |
0.23 |
6.9 |
2.9, 2.5, 6.9, 2.6, 2.6, 3.4, 2.8, 5.9 |
| moderada |
0.675 |
0.93 |
1.3250 |
0.40 |
8.3 |
2.5, 3.24, 8.3 |
#boxplot
ggplot(datos, aes(x = fibrosis, y = proteínas.totales)) +
geom_boxplot(fill = "skyblue", color = "blue") +
labs(x = "Fibrosis", y = "Proteínas totales") +
ggtitle("Boxplot de Proteínas totales según Fibrosis")

variable <- "proteínas.totales"
summary_stats <- compute_summary_stats(datos, fibrosis, !!as.name(variable))
kable(summary_stats, caption = "Resumen Proteínas Totales")
Resumen Proteínas Totales
| ausencia |
6.700 |
7.10 |
7.5 |
4.6 |
8.6 |
4.6, 5.3, 5.4, 5.3 |
| importante |
6.950 |
7.25 |
7.7 |
5.7 |
8.2 |
5.7 |
| leve |
6.725 |
7.10 |
7.4 |
6.2 |
9.1 |
9.1, 9 |
| moderada |
6.890 |
7.20 |
7.6 |
5.6 |
8.5 |
5.6 |
#boxplot
ggplot(datos, aes(x = fibrosis, y = albúmina)) +
geom_boxplot(fill = "skyblue", color = "blue") +
labs(x = "Fibrosis", y = "Albúmina") +
ggtitle("Boxplot de Albúmina según Fibrosis")

variable <- "albúmina"
summary_stats <- compute_summary_stats(datos, fibrosis, !!as.name(variable))
kable(summary_stats, caption = "Resumen Albúmina")
Resumen Albúmina
| ausencia |
4.2 |
4.40 |
4.600 |
2.6 |
7.7 |
5.3, 3.2, 7.7, 2.7, 2.6 |
| importante |
3.5 |
3.85 |
4.225 |
2.9 |
4.6 |
|
| leve |
4.0 |
4.30 |
4.500 |
3.2 |
5.0 |
3.2 |
| moderada |
3.7 |
4.05 |
4.300 |
2.9 |
4.7 |
|
#boxplot
ggplot(datos, aes(x = fibrosis, y = sodio)) +
geom_boxplot(fill = "skyblue", color = "blue") +
labs(x = "Fibrosis", y = "Sodio") +
ggtitle("Boxplot de Sodio según Fibrosis")

variable <- "sodio"
summary_stats <- compute_summary_stats(datos, fibrosis, !!as.name(variable))
kable(summary_stats, caption = "Resumen Sodio")
Resumen Sodio
| ausencia |
138 |
140 |
142 |
128 |
150 |
150, 131, 128 |
| importante |
138 |
140 |
141 |
128 |
147 |
128, 147 |
| leve |
138 |
140 |
141 |
133 |
145 |
133 |
| moderada |
137 |
139 |
141 |
132 |
145 |
|
#boxplot
ggplot(datos, aes(x = fibrosis, y = potasio)) +
geom_boxplot(fill = "skyblue", color = "blue") +
labs(x = "Fibrosis", y = "Potasio") +
ggtitle("Boxplot de Potasio según Fibrosis")

variable <- "potasio"
summary_stats <- compute_summary_stats(datos, fibrosis, !!as.name(variable))
kable(summary_stats, caption = "Resumen Potasio")
Resumen Potasio
| ausencia |
4.3 |
4.60 |
4.800 |
3.6 |
6.0 |
5.9, 6, 5.8, 5.6 |
| importante |
4.1 |
4.45 |
4.725 |
3.4 |
5.4 |
|
| leve |
4.3 |
4.50 |
4.700 |
3.5 |
6.0 |
6, 5.5, 3.6, 5.5, 5.6, 3.5, 5.5, 5.6 |
| moderada |
4.2 |
4.40 |
4.800 |
3.8 |
6.0 |
6, 5.8 |
#boxplot
ggplot(datos, aes(x = fibrosis, y = leucocitos)) +
geom_boxplot(fill = "skyblue", color = "blue") +
labs(x = "Fibrosis", y = "Leucocitos") +
ggtitle("Boxplot de Leucocitos según Fibrosis")

variable <- "leucocitos"
summary_stats <- compute_summary_stats(datos, fibrosis, !!as.name(variable))
kable(summary_stats, caption = "Resumen Leucocitos")
Resumen Leucocitos
| ausencia |
4430.0 |
5650 |
7000.0 |
2440 |
12640 |
11610, 11010, 12640 |
| importante |
3307.5 |
4795 |
6837.5 |
1980 |
11240 |
|
| leve |
4217.5 |
5540 |
6657.5 |
2240 |
11950 |
11950, 11090, 10420, 10490 |
| moderada |
3695.0 |
4520 |
6085.0 |
1700 |
8690 |
|
#boxplot
ggplot(datos, aes(x = fibrosis, y = hematocrito)) +
geom_boxplot(fill = "skyblue", color = "blue") +
labs(x = "Fibrosis", y = "Hematocrito") +
ggtitle("Boxplot de Hematocrito según Fibrosis")

variable <- "hematocrito"
summary_stats <- compute_summary_stats(datos, fibrosis, !!as.name(variable))
kable(summary_stats, caption = "Resumen Hematocrito")
Resumen Hematocrito
| ausencia |
38.00 |
41 |
45.00 |
24.0 |
55 |
24 |
| importante |
37.75 |
41 |
45.00 |
30.0 |
47 |
|
| leve |
39.00 |
42 |
44.55 |
31.8 |
57 |
56.8, 57 |
| moderada |
37.90 |
40 |
43.00 |
31.0 |
53 |
53 |
#boxplot
ggplot(datos, aes(x = fibrosis, y = plaquetas)) +
geom_boxplot(fill = "skyblue", color = "blue") +
labs(x = "Fibrosis", y = "Plaquetas") +
ggtitle("Boxplot de Plaquetas según Fibrosis")

variable <- "plaquetas"
summary_stats <- compute_summary_stats(datos, fibrosis, !!as.name(variable))
kable(summary_stats, caption = "Resumen Plaquetas")
Resumen Plaquetas
| ausencia |
112000 |
140000 |
168000 |
10000 |
261000 |
261000, 10000, 258000 |
| importante |
81500 |
103000 |
124500 |
14000 |
229000 |
229000 |
| leve |
116000 |
149500 |
175000 |
35000 |
259000 |
|
| moderada |
91750 |
135500 |
162750 |
42000 |
297000 |
297000 |
#boxplot
ggplot(datos, aes(x = fibrosis, y = Índice.de.Quick)) +
geom_boxplot(fill = "skyblue", color = "blue") +
labs(x = "Fibrosis", y = "Índice de Quick") +
ggtitle("Boxplot de Índice de Quick según Fibrosis")

variable <- "Índice.de.Quick"
summary_stats <- compute_summary_stats(datos, fibrosis, !!as.name(variable))
kable(summary_stats, caption = "Resumen índice de Quick")
Resumen índice de Quick
| ausencia |
100 |
100.0 |
100.0 |
53 |
118 |
84, 103, 99, 99, 96, 98, 99, 102, 95, 96, 90, 92, 78,
96, 80, 99, 96, 70, 90, 98, 98, 84, 88, 95, 98, 53, 80, 86, 99, 118, 90,
94, 77.7, 94 |
| importante |
76 |
86.5 |
98.5 |
45 |
100 |
|
| leve |
98 |
100.0 |
100.0 |
71 |
100 |
76, 92, 92, 87, 93, 94, 90, 83, 94, 92, 85, 94, 76, 87,
89, 86, 90, 71, 86 |
| moderada |
90 |
98.5 |
100.0 |
53 |
100 |
53, 63, 56, 60 |
#boxplot
datos_sin_na_nan <- datos[!is.na(datos$fibrinógeno) & !is.nan(datos$fibrinógeno), ]
ggplot(datos_sin_na_nan, aes(x = fibrosis, y = fibrinógeno)) +
geom_boxplot(fill = "skyblue", color = "blue") +
labs(x = "Fibrosis", y = "Fibrinógeno") +
ggtitle("Boxplot de Fibrinógeno según Fibrosis")

variable <- "fibrinógeno"
summary_stats <- compute_summary_stats(datos_sin_na_nan, fibrosis, !!as.name(variable))
kable(summary_stats, caption = "Resumen Fibrinógeno")
Resumen Fibrinógeno
| ausencia |
240 |
276.0 |
312.00 |
163 |
610 |
438, 458, 531, 538, 455, 610 |
| importante |
196 |
230.0 |
258.75 |
143 |
387 |
387 |
| leve |
227 |
274.0 |
324.00 |
125 |
471 |
471 |
| moderada |
217 |
265.5 |
298.25 |
123 |
399 |
|
tabla_frecuencia_agrupada <- function(datos) {
# Calcular frecuencia absoluta para la variable "datos"
frecuencia_absoluta <- table(datos)
# Calcular la frecuencia relativa
frecuencia_relativa <- prop.table(frecuencia_absoluta)
# Calcular la frecuencia porcentual
frecuencia_porcentual <- frecuencia_relativa * 100
# Calcular la frecuencia absoluta acumulada
frecuencia_acumulada <- cumsum(frecuencia_absoluta)
# Calcular la frecuencia relativa acumulada
frecuencia_relativa_acumulada <- cumsum(frecuencia_relativa)
# Calcular la frecuencia porcentual acumulada
frecuencia_porcentual_acumulada <- cumsum(frecuencia_porcentual)
# Crear el dataframe con los resultados
tabla_resultado <- data.frame(
Frecuencia_Absoluta = c(frecuencia_absoluta),
Frecuencia_Relativa = c(frecuencia_relativa),
Frecuencia_Porcentual = c(frecuencia_porcentual),
Frecuencia_Absoluta_Acumulada = c(frecuencia_acumulada),
Frecuencia_Relativa_Acumulada = c(frecuencia_relativa_acumulada),
Frecuencia_Porcentual_Acumulada = c(frecuencia_porcentual_acumulada)
)
tabla_resultado <- tabla_resultado[, !grepl(".frecuencias", colnames(tabla_resultado))]
colnames(tabla_resultado) <- c("Frecuencia Absoluta",
"Frecuencia Relativa",
"Frecuencia Porcentual",
"Frecuencia Absoluta Acumulada",
"Frecuencia Relativa Acumulada",
"Frecuencia Porcentual Acumulada")
return(tabla_resultado)
}
# Ejemplo de uso de la función con la variable "género"
resultado <- tabla_frecuencia_agrupada(datos$genero)
# Imprimir el resultado
kable(resultado)
| Hombre |
173 |
0.5356037 |
53.56037 |
173 |
0.5356037 |
53.56037 |
| Mujer |
150 |
0.4643963 |
46.43963 |
323 |
1.0000000 |
100.00000 |
tabla_frecuencia_agrupada <- function(datos) {
# Calcular frecuencia absoluta para la variable "datos"
frecuencia_absoluta <- table(datos)
# Calcular la frecuencia relativa
frecuencia_relativa <- prop.table(frecuencia_absoluta)
# Calcular la frecuencia porcentual
frecuencia_porcentual <- frecuencia_relativa * 100
# Calcular la frecuencia absoluta acumulada
frecuencia_acumulada <- cumsum(frecuencia_absoluta)
# Calcular la frecuencia relativa acumulada
frecuencia_relativa_acumulada <- cumsum(frecuencia_relativa)
# Calcular la frecuencia porcentual acumulada
frecuencia_porcentual_acumulada <- cumsum(frecuencia_porcentual)
# Crear el dataframe con los resultados
tabla_resultado <- data.frame(
Frecuencia_Absoluta = c(frecuencia_absoluta),
Frecuencia_Relativa = c(frecuencia_relativa),
Frecuencia_Porcentual = c(frecuencia_porcentual),
Frecuencia_Absoluta_Acumulada = c(frecuencia_acumulada),
Frecuencia_Relativa_Acumulada = c(frecuencia_relativa_acumulada),
Frecuencia_Porcentual_Acumulada = c(frecuencia_porcentual_acumulada)
)
tabla_resultado <- tabla_resultado[, !grepl(".frecuencias", colnames(tabla_resultado))]
colnames(tabla_resultado) <- c("Frecuencia Absoluta",
"Frecuencia Relativa",
"Frecuencia Porcentual",
"Frecuencia Absoluta Acumulada",
"Frecuencia Relativa Acumulada",
"Frecuencia Porcentual Acumulada")
return(tabla_resultado)
}
# Ejemplo de uso de la función con la variable "género"
resultado <- tabla_frecuencia_agrupada(datos$fibrosis)
# Imprimir el resultado
kable(resultado)
| ausencia |
141 |
0.4365325 |
43.65325 |
141 |
0.4365325 |
43.65325 |
| importante |
20 |
0.0619195 |
6.19195 |
161 |
0.4984520 |
49.84520 |
| leve |
110 |
0.3405573 |
34.05573 |
271 |
0.8390093 |
83.90093 |
| moderada |
52 |
0.1609907 |
16.09907 |
323 |
1.0000000 |
100.00000 |
#dispersión para Glucemia
Glucemia.GRAPH <- ggplot(datos, aes(x = fibrosis, y = Glucemia, color = fibrosis)) +
geom_point(alpha = 0.7, size = 3) +
labs(x = "Categoría de Fibrosis", y = "Glucemia", color = "Categoría de Fibrosis", title = "Comparación de Glucemia por categoría de fibrosis") +
theme_minimal()
#dispersión para Urea
Urea.GRAPH <- ggplot(datos, aes(x = fibrosis, y = Urea, color = fibrosis)) +
geom_point(alpha = 0.7, size = 3) +
labs(x = "Categoría de Fibrosis", y = "Urea", color = "Categoría de Fibrosis", title = "Comparación de Urea por categoría de fibrosis") +
theme_minimal()
#dispersión para Creatinina
Creatinina.GRAPH <- ggplot(datos, aes(x = fibrosis, y = Creatinina, color = fibrosis)) +
geom_point(alpha = 0.7, size = 3) +
labs(x = "Categoría de Fibrosis", y = "Creatinina", color = "Categoría de Fibrosis", title = "Comparación de Creatinina por categoría de fibrosis") +
theme_minimal()
#dispersión para Colesterol
Colesterol.GRAPH <- ggplot(datos, aes(x = fibrosis, y = Colesterol, color = fibrosis)) +
geom_point(alpha = 0.7, size = 3) +
labs(x = "Categoría de Fibrosis", y = "Colesterol", color = "Categoría de Fibrosis", title = "Comparación de Colesterol por categoría de fibrosis") +
theme_minimal()
#dispersión para Triglicéridos
Triglicéridos.GRAPH <- ggplot(datos, aes(x = fibrosis, y = Triglicéridos, color = fibrosis)) +
geom_point(alpha = 0.7, size = 3) +
labs(x = "Categoría de Fibrosis", y = "Triglicéridos", color = "Categoría de Fibrosis", title = "Comparación de Triglicéridos por categoría de fibrosis") +
theme_minimal()
#dispersión para GOT
GOT.GRAPH <- ggplot(datos, aes(x = fibrosis, y = GOT, color = fibrosis)) +
geom_point(alpha = 0.7, size = 3) +
labs(x = "Categoría de Fibrosis", y = "GOT", color = "Categoría de Fibrosis", title = "Comparación de GOT por categoría de fibrosis") +
theme_minimal()
#dispersión para GPT
GPT.GRAPH <-ggplot(datos, aes(x = fibrosis, y = GPT, color = fibrosis)) +
geom_point(alpha = 0.7, size = 3) +
labs(x = "Categoría de Fibrosis", y = "GPT", color = "Categoría de Fibrosis", title = "Comparación de GPT por categoría de fibrosis") +
theme_minimal()
#dispersión para GGT
GGT.GRAPH <- ggplot(datos, aes(x = fibrosis, y = GGT, color = fibrosis)) +
geom_point(alpha = 0.7, size = 3) +
labs(x = "Categoría de Fibrosis", y = "GGT", color = "Categoría de Fibrosis", title = "Comparación de GGT por categoría de fibrosis") +
theme_minimal()
#dispersión para Fosfatasa Alcalina
Fosfatasa.Alcalina.GRAPH <- ggplot(datos, aes(x = fibrosis, y = Fosfatasa.Alcalina, color = fibrosis)) +
geom_point(alpha = 0.7, size = 3) +
labs(x = "Categoría de Fibrosis", y = "Fosfatasa Alcalina", color = "Categoría de Fibrosis", title = "Comparación de Fosfatasa Alcalina por categoría de fibrosis") +
theme_minimal()
#dispersión para bilirrubina total
bilirrubina.total.GRAPH <- ggplot(datos, aes(x = fibrosis, y = bilirrubina.total, color = fibrosis)) +
geom_point(alpha = 0.7, size = 3) +
labs(x = "Categoría de Fibrosis", y = "Bilirrubina total", color = "Categoría de Fibrosis", title = "Comparación de Bilirrubina total por categoría de fibrosis") +
theme_minimal()
#dispersión para proteínas totales
proteínas.totales.GRAPH <- ggplot(datos, aes(x = fibrosis, y = proteínas.totales, color = fibrosis)) +
geom_point(alpha = 0.7, size = 3) +
labs(x = "Categoría de Fibrosis", y = "Proteínas totales", color = "Categoría de Fibrosis", title = "Comparación de Proteínas totales por categoría de fibrosis") +
theme_minimal()
#dispersión para albúmina
albúmina.GRAPH <- ggplot(datos, aes(x = fibrosis, y = albúmina, color = fibrosis)) +
geom_point(alpha = 0.7, size = 3) +
labs(x = "Categoría de Fibrosis", y = "Albúmina", color = "Categoría de Fibrosis", title = "Comparación de Albúmina por categoría de fibrosis") +
theme_minimal()
#dispersión para sodio
sodio.GRAPH <- ggplot(datos, aes(x = fibrosis, y = sodio, color = fibrosis)) +
geom_point(alpha = 0.7, size = 3) +
labs(x = "Categoría de Fibrosis", y = "Sodio", color = "Categoría de Fibrosis", title = "Comparación de Sodio por categoría de fibrosis") +
theme_minimal()
#dispersión para Potasio
potasio.GRAPH <- ggplot(datos, aes(x = fibrosis, y = potasio, color = fibrosis)) +
geom_point(alpha = 0.7, size = 3) +
labs(x = "Categoría de Fibrosis", y = "Potasio", color = "Categoría de Fibrosis", title = "Comparación de Potasio por categoría de fibrosis") +
theme_minimal()
#dispersión para leucocitos
leucocitos.GRAPH <- ggplot(datos, aes(x = fibrosis, y = leucocitos, color = fibrosis)) +
geom_point(alpha = 0.7, size = 3) +
labs(x = "Categoría de Fibrosis", y = "Leucocitos", color = "Categoría de Fibrosis", title = "Comparación de Leucocitos por categoría de fibrosis") +
theme_minimal()
#dispersión para Hematocrito
hematocrito.GRAPH <- ggplot(datos, aes(x = fibrosis, y = hematocrito, color = fibrosis)) +
geom_point(alpha = 0.7, size = 3) +
labs(x = "Categoría de Fibrosis", y = "Hematocrito ", color = "Categoría de Fibrosis", title = "Comparación de Hematocrito por categoría de fibrosis") +
theme_minimal()
#dispersión para plaquetas
plaquetas.GRAPH <- ggplot(datos, aes(x = fibrosis, y = plaquetas, color = fibrosis)) +
geom_point(alpha = 0.7, size = 3) +
labs(x = "Categoría de Fibrosis", y = "Plaquetas", color = "Categoría de Fibrosis", title = "Comparación de Plaquetas por categoría de fibrosis") +
theme_minimal()
#dispersión para Índice de Quick
Índice.de.Quick.GRAPH <- ggplot(datos, aes(x = fibrosis, y = Índice.de.Quick, color = fibrosis)) +
geom_point(alpha = 0.7, size = 3) +
labs(x = "Categoría de Fibrosis", y = "Índice de Quick", color = "Categoría de Fibrosis", title = "Comparación de Índice de Quick por categoría de fibrosis") +
theme_minimal()
#dispersión para fibrinógeno
fibrinógeno.GRAPH <- ggplot(datos, aes(x = fibrosis, y = fibrinógeno, color = fibrosis)) +
geom_point(alpha = 0.7, size = 3) +
labs(x = "Categoría de Fibrosis", y = "Fibrinógeno", color = "Categoría de Fibrosis", title = "Comparación de Fibrinógeno por categoría de fibrosis") +
theme_minimal()
print(Glucemia.GRAPH)

print(Urea.GRAPH)

print(Creatinina.GRAPH)

print(Colesterol.GRAPH)

print(Triglicéridos.GRAPH)

print(GOT.GRAPH)

print(GPT.GRAPH)

print(GGT.GRAPH)

print(Fosfatasa.Alcalina.GRAPH)

print(bilirrubina.total.GRAPH)

print(proteínas.totales.GRAPH)

print(albúmina.GRAPH)

print(sodio.GRAPH)

print(potasio.GRAPH)

print(leucocitos.GRAPH)

print(plaquetas.GRAPH)

print(Índice.de.Quick.GRAPH)

print(fibrinógeno.GRAPH)
## Warning: Removed 1 row containing missing values or values outside the scale range
## (`geom_point()`).

ggplot() +
geom_point(datos, mapping=aes(x=Individuo, y= Glucemia, color = genero)) +
facet_wrap(~ fibrosis)

ggplot() +
geom_point(datos, mapping=aes(x=Individuo, y= Urea, color = genero)) +
facet_wrap(~ fibrosis)

ggplot() +
geom_point(datos, mapping=aes(x=Individuo, y= Creatinina, color = genero)) +
facet_wrap(~ fibrosis)

ggplot() +
geom_point(datos, mapping=aes(x=Individuo, y= Colesterol, color = genero)) +
facet_wrap(~ fibrosis)

ggplot() +
geom_point(datos, mapping=aes(x=Individuo, y= Triglicéridos, color = genero)) +
facet_wrap(~ fibrosis)

ggplot() +
geom_point(datos, mapping=aes(x=Individuo, y= GOT, color = genero)) +
facet_wrap(~ fibrosis)

ggplot() +
geom_point(datos, mapping=aes(x=Individuo, y= GPT, color = genero)) +
facet_wrap(~ fibrosis)

ggplot() +
geom_point(datos, mapping=aes(x=Individuo, y= GGT, color = genero)) +
facet_wrap(~ fibrosis)

ggplot() +
geom_point(datos, mapping=aes(x=Individuo, y= Fosfatasa.Alcalina, color = genero)) +
facet_wrap(~ fibrosis)

ggplot() +
geom_point(datos, mapping=aes(x=Individuo, y= bilirrubina.total, color = genero)) +
facet_wrap(~ fibrosis)

ggplot() +
geom_point(datos, mapping=aes(x=Individuo, y= proteínas.totales, color = genero)) +
facet_wrap(~ fibrosis)

ggplot() +
geom_point(datos, mapping=aes(x=Individuo, y= albúmina, color = genero)) +
facet_wrap(~ fibrosis)

ggplot() +
geom_point(datos, mapping=aes(x=Individuo, y= sodio, color = genero)) +
facet_wrap(~ fibrosis)

ggplot() +
geom_point(datos, mapping=aes(x=Individuo, y= potasio, color = genero)) +
facet_wrap(~ fibrosis)

ggplot() +
geom_point(datos, mapping=aes(x=Individuo, y= leucocitos, color = genero)) +
facet_wrap(~ fibrosis)

ggplot() +
geom_point(datos, mapping=aes(x=Individuo, y= hematocrito, color = genero)) +
facet_wrap(~ fibrosis)

ggplot() +
geom_point(datos, mapping=aes(x=Individuo, y= plaquetas, color = genero)) +
facet_wrap(~ fibrosis)

ggplot() +
geom_point(datos, mapping=aes(x=Individuo, y= Índice.de.Quick, color = genero)) +
facet_wrap(~ fibrosis)

ggplot() +
geom_point(datos, mapping=aes(x=Individuo, y= fibrinógeno, color = genero)) +
facet_wrap(~ fibrosis)
## Warning: Removed 1 row containing missing values or values outside the scale range
## (`geom_point()`).

ggplot(datos, aes(x=Individuo, y= proteínas.totales, color= bilirrubina.total)) +
geom_point() +
facet_wrap(~fibrosis) +
scale_color_gradient(low = "blue", high = "red")

ggplot(datos, aes( x= Colesterol, y = Triglicéridos, color = Colesterol)) +
geom_point() +
facet_wrap(~fibrosis) +
scale_color_gradient(low = "blue", high = "red")

ggplot(datos, aes( x= Índice.de.Quick, y = fibrinógeno, color = Índice.de.Quick)) +
geom_point() +
facet_wrap(~fibrosis) +
scale_color_gradient(low = "blue", high = "red")
## Warning: Removed 1 row containing missing values or values outside the scale range
## (`geom_point()`).

tablafrec <- function(datos, variable, nombre_variable = NULL) {
TF <- as.data.frame(table(cut(datos[[variable]], breaks = 10)))
tablafrec <- transform(TF,
FreqAc = cumsum(Freq),
Rel = round(prop.table(Freq), 2),
RelAc = round(cumsum(prop.table(Freq)), 2),
FreqPer = round(prop.table(Freq), 2) * 100,
FreqPerAc = round(cumsum(prop.table(Freq)), 2) * 100
)
if (!is.null(nombre_variable)) {
names(tablafrec)[1] <- nombre_variable
}
return(tablafrec)
}
Glusemia <- datos$Glucemia
h <- hist(Glusemia, xlim=c(0,400), ylim=c(0,200), col="darkseagreen1", main="Histograma Glusemia")
text(h$mids, h$counts, labels=h$counts, adj=c(0.5, -0.5))

Urea <- datos$Urea
h <- hist(Urea, xlim=c(0,190), ylim=c(0,200), col="darkseagreen2", main="Histograma Urea")
eje_x <- seq(0, 200, by = 20)
axis(1, at = eje_x)
#etiquetas
text(h$mids, h$counts, labels=h$counts, adj=c(0.5, -0.5))

Creatinina <- datos$Creatinina
h <- hist(Creatinina, xlim=c(0,10), ylim=c(0,200), col="darkseagreen2", main="Histograma Creatinina")
eje_x <- seq(0, 10)
axis(1, at = eje_x)
#etiquetas
text(h$mids, h$counts, labels=h$counts, adj=c(0.5, -0.5))

Colesterol <- datos$Colesterol
h <- hist(Colesterol, xlim=c(0,350), ylim=c(0,200), col="darkseagreen2", main="Histograma Colesterol")
#etiquetas
text(h$mids, h$counts, labels=h$counts, adj=c(0.5, -0.5))

Triglicéridos <- datos$Triglicéridos
h <- hist(Triglicéridos, xlim=c(0,600), ylim=c(0,120), col="darkseagreen2", main="Histograma Triglicéridos")
#etiquetas
text(h$mids, h$counts, labels=h$counts, adj=c(0.5, -0.5))

GOT <- datos$GOT
h <- hist(GOT, xlim=c(0,800), ylim=c(0,250), col="darkseagreen2", main="Histograma GOT")
#etiquetas
text(h$mids, h$counts, labels=h$counts, adj=c(0.5, -0.5))

GPT <- datos$GPT
h <- hist(GPT, xlim=c(0,800), ylim=c(0,200), col="darkseagreen2", main="Histograma GPT")
#etiquetas
text(h$mids, h$counts, labels=h$counts, adj=c(0.5, -0.5))

GGT <- datos$GGT
h <- hist(GGT, xlim=c(0,2000), ylim=c(0,300), col="darkseagreen2", main="Histograma GGT")
#etiquetas
text(h$mids, h$counts, labels=h$counts, adj=c(0.5, -0.5))

Fosfatasa.Alcalina <- datos$Fosfatasa.Alcalina
h <- hist(Fosfatasa.Alcalina, xlim=c(0,500), ylim=c(0,200), col="darkseagreen2", main="Histograma Fosfatasa Alcalina")
#etiquetas
text(h$mids, h$counts, labels=h$counts, adj=c(0.5, -0.5))

bilirrubina.total <- datos$bilirrubina.total
intervalos <- seq(0, 10, by = 0.5)
h <- hist(bilirrubina.total, breaks = intervalos, xlim=c(0.2,10), ylim=c(0,200), col="darkseagreen2", main="Histograma Bilirrubina total")
#etiquetas
text(h$mids, h$counts, labels=h$counts, adj=c(0.5, -0.5))

proteínas.totales <- datos$proteínas.totales
h <- hist(proteínas.totales, xlim=c(4.5,9.5), ylim=c(0,120), col="darkseagreen2", main="Histograma Proteínas totales")
#etiquetas
text(h$mids, h$counts, labels=h$counts, adj=c(0.5, -0.5))

albúmina <- datos$albúmina
h <- hist(albúmina, xlim=c(2,8), ylim=c(0,200), col="darkseagreen2", main="Histograma Albúmina")
#etiquetas
text(h$mids, h$counts, labels=h$counts, adj=c(0.5, -0.5))

sodio <- datos$sodio
h <- hist(sodio, xlim=c(125,150), ylim=c(0,120), col="darkseagreen2", main="Histograma Sodio")
#etiquetas
text(h$mids, h$counts, labels=h$counts, adj=c(0.5, -0.5))

potasio <- datos$potasio
h <- hist(potasio, xlim=c(3,6), ylim=c(0,80), col="darkseagreen2", main="Histograma Potasio")
#etiquetas
text(h$mids, h$counts, labels=h$counts, adj=c(0.5, -0.5))

leucocitos <- datos$leucocitos
h <- hist(leucocitos, xlim=c(1500, 12750), ylim=c(0,80), col="darkseagreen2", main="Histograma Leucocitos")
#etiquetas
text(h$mids, h$counts, labels=h$counts, adj=c(0.5, -0.5))

hematocrito <- datos$hematocrito
h <- hist(hematocrito, xlim=c(20,60), ylim=c(0,130), col="darkseagreen2", main="Histograma Hematocrito")
#etiquetas
text(h$mids, h$counts, labels=h$counts, adj=c(0.5, -0.5))

plaquetas <- datos$plaquetas
h <- hist(plaquetas, xlim=c(10000,300000), ylim=c(0,150), col="darkseagreen2", main="Histograma Plaquetas")
#etiquetas
text(h$mids, h$counts, labels=h$counts, adj=c(0.5, -0.5))

Índice.de.Quick <- datos$Índice.de.Quick
h <- hist(Índice.de.Quick, xlim=c(40,120), ylim=c(0,300), col="darkseagreen2", main="Histograma Índice de Quick")
#etiquetas
text(h$mids, h$counts, labels=h$counts, adj=c(0.5, -0.5))

fibrinógeno <- datos$fibrinógeno
h <- hist(fibrinógeno, xlim=c(120,620), ylim=c(0,120), col="darkseagreen2", main="Histograma Fibrinógeno")
#etiquetas
text(h$mids, h$counts, labels=h$counts, adj=c(0.5, -0.5))

TFUrea <- as.data.frame(table(Urea = cut(datos$Urea, breaks = 10)))
TFUrea <- transform(TFUrea,
FreqAc = cumsum(Freq),
Rel = round(prop.table(Freq), 2),
RelAc = round(cumsum(prop.table(Freq)), 2)
)
kable(TFUrea)
| (10.8,27.3] |
132 |
132 |
0.41 |
0.41 |
| (27.3,43.6] |
111 |
243 |
0.34 |
0.75 |
| (43.6,59.9] |
54 |
297 |
0.17 |
0.92 |
| (59.9,76.2] |
21 |
318 |
0.07 |
0.98 |
| (76.2,92.5] |
3 |
321 |
0.01 |
0.99 |
| (92.5,109] |
1 |
322 |
0.00 |
1.00 |
| (109,125] |
0 |
322 |
0.00 |
1.00 |
| (125,141] |
0 |
322 |
0.00 |
1.00 |
| (141,158] |
0 |
322 |
0.00 |
1.00 |
| (158,174] |
1 |
323 |
0.00 |
1.00 |
#Tabla de Frecuencia
Tabla.frec <- function(datos, variable, num_breaks = 10) {
Variable <- as.data.frame(table(Var = cut(datos[[variable]], breaks = num_breaks)))
Variable <- transform(Variable,
Rel = round(prop.table(Freq), 3),
Rel.per = round(prop.table(Freq) * 100, 3),
FreqAc = cumsum(Freq),
RelAc = round(cumsum(prop.table(Freq)), 3),
Freq.PerAc = round(cumsum(prop.table(Freq) * 100), 3)
)
return(Variable)
}
resultados <- Tabla.frec(datos, "Glucemia")
kable(resultados, caption = "Tabla de frecuencia Glucemia")
Tabla de frecuencia Glucemia
| (13.7,47.8] |
2 |
0.006 |
0.619 |
2 |
0.006 |
0.619 |
| (47.8,81.6] |
37 |
0.115 |
11.455 |
39 |
0.121 |
12.074 |
| (81.6,115] |
188 |
0.582 |
58.204 |
227 |
0.703 |
70.279 |
| (115,149] |
58 |
0.180 |
17.957 |
285 |
0.882 |
88.235 |
| (149,183] |
18 |
0.056 |
5.573 |
303 |
0.938 |
93.808 |
| (183,217] |
8 |
0.025 |
2.477 |
311 |
0.963 |
96.285 |
| (217,251] |
6 |
0.019 |
1.858 |
317 |
0.981 |
98.142 |
| (251,284] |
3 |
0.009 |
0.929 |
320 |
0.991 |
99.071 |
| (284,318] |
2 |
0.006 |
0.619 |
322 |
0.997 |
99.690 |
| (318,352] |
1 |
0.003 |
0.310 |
323 |
1.000 |
100.000 |
resultados <- Tabla.frec(datos, "Urea")
kable(resultados, caption = "Tabla de frecuencia Urea")
Tabla de frecuencia Urea
| (10.8,27.3] |
132 |
0.409 |
40.867 |
132 |
0.409 |
40.867 |
| (27.3,43.6] |
111 |
0.344 |
34.365 |
243 |
0.752 |
75.232 |
| (43.6,59.9] |
54 |
0.167 |
16.718 |
297 |
0.920 |
91.950 |
| (59.9,76.2] |
21 |
0.065 |
6.502 |
318 |
0.985 |
98.452 |
| (76.2,92.5] |
3 |
0.009 |
0.929 |
321 |
0.994 |
99.381 |
| (92.5,109] |
1 |
0.003 |
0.310 |
322 |
0.997 |
99.690 |
| (109,125] |
0 |
0.000 |
0.000 |
322 |
0.997 |
99.690 |
| (125,141] |
0 |
0.000 |
0.000 |
322 |
0.997 |
99.690 |
| (141,158] |
0 |
0.000 |
0.000 |
322 |
0.997 |
99.690 |
| (158,174] |
1 |
0.003 |
0.310 |
323 |
1.000 |
100.000 |
resultados <- Tabla.frec(datos, "Creatinina")
kable(resultados, caption = "Tabla de frecuencia Creatinina")
Tabla de frecuencia Creatinina
| (0.391,1.3] |
238 |
0.737 |
73.684 |
238 |
0.737 |
73.684 |
| (1.3,2.2] |
79 |
0.245 |
24.458 |
317 |
0.981 |
98.142 |
| (2.2,3.1] |
4 |
0.012 |
1.238 |
321 |
0.994 |
99.381 |
| (3.1,4] |
0 |
0.000 |
0.000 |
321 |
0.994 |
99.381 |
| (4,4.9] |
1 |
0.003 |
0.310 |
322 |
0.997 |
99.690 |
| (4.9,5.8] |
0 |
0.000 |
0.000 |
322 |
0.997 |
99.690 |
| (5.8,6.7] |
0 |
0.000 |
0.000 |
322 |
0.997 |
99.690 |
| (6.7,7.6] |
0 |
0.000 |
0.000 |
322 |
0.997 |
99.690 |
| (7.6,8.5] |
0 |
0.000 |
0.000 |
322 |
0.997 |
99.690 |
| (8.5,9.41] |
1 |
0.003 |
0.310 |
323 |
1.000 |
100.000 |
resultados <- Tabla.frec(datos, "Colesterol")
kable(resultados, caption = "Tabla de frecuencia Colesterol")
Tabla de frecuencia Colesterol
| (19.7,51.7] |
1 |
0.003 |
0.310 |
1 |
0.003 |
0.310 |
| (51.7,83.4] |
1 |
0.003 |
0.310 |
2 |
0.006 |
0.619 |
| (83.4,115] |
12 |
0.037 |
3.715 |
14 |
0.043 |
4.334 |
| (115,147] |
42 |
0.130 |
13.003 |
56 |
0.173 |
17.337 |
| (147,178] |
99 |
0.307 |
30.650 |
155 |
0.480 |
47.988 |
| (178,210] |
103 |
0.319 |
31.889 |
258 |
0.799 |
79.876 |
| (210,242] |
41 |
0.127 |
12.693 |
299 |
0.926 |
92.570 |
| (242,274] |
20 |
0.062 |
6.192 |
319 |
0.988 |
98.762 |
| (274,305] |
2 |
0.006 |
0.619 |
321 |
0.994 |
99.381 |
| (305,337] |
2 |
0.006 |
0.619 |
323 |
1.000 |
100.000 |
resultados <- Tabla.frec(datos, "Triglicéridos")
kable(resultados, caption = "Tabla de frecuencia Triglicéridos")
Tabla de frecuencia Triglicéridos
| (6.92,65.8] |
12 |
0.037 |
3.715 |
12 |
0.037 |
3.715 |
| (65.8,124] |
126 |
0.390 |
39.009 |
138 |
0.427 |
42.724 |
| (124,183] |
92 |
0.285 |
28.483 |
230 |
0.712 |
71.207 |
| (183,241] |
50 |
0.155 |
15.480 |
280 |
0.867 |
86.687 |
| (241,299] |
21 |
0.065 |
6.502 |
301 |
0.932 |
93.189 |
| (299,358] |
13 |
0.040 |
4.025 |
314 |
0.972 |
97.214 |
| (358,416] |
2 |
0.006 |
0.619 |
316 |
0.978 |
97.833 |
| (416,474] |
6 |
0.019 |
1.858 |
322 |
0.997 |
99.690 |
| (474,533] |
0 |
0.000 |
0.000 |
322 |
0.997 |
99.690 |
| (533,592] |
1 |
0.003 |
0.310 |
323 |
1.000 |
100.000 |
resultados <- Tabla.frec(datos, "GOT")
kable(resultados, caption = "Tabla de frecuencia GOT")
Tabla de frecuencia GOT
| (12.3,86.9] |
219 |
0.678 |
67.802 |
219 |
0.678 |
67.802 |
| (86.9,161] |
63 |
0.195 |
19.505 |
282 |
0.873 |
87.307 |
| (161,235] |
24 |
0.074 |
7.430 |
306 |
0.947 |
94.737 |
| (235,309] |
5 |
0.015 |
1.548 |
311 |
0.963 |
96.285 |
| (309,382] |
6 |
0.019 |
1.858 |
317 |
0.981 |
98.142 |
| (382,456] |
1 |
0.003 |
0.310 |
318 |
0.985 |
98.452 |
| (456,530] |
2 |
0.006 |
0.619 |
320 |
0.991 |
99.071 |
| (530,604] |
2 |
0.006 |
0.619 |
322 |
0.997 |
99.690 |
| (604,678] |
0 |
0.000 |
0.000 |
322 |
0.997 |
99.690 |
| (678,753] |
1 |
0.003 |
0.310 |
323 |
1.000 |
100.000 |
resultados <- Tabla.frec(datos, "GPT")
kable(resultados, caption = "Tabla de frecuencia GPT")
Tabla de frecuencia GPT
| (15.2,91] |
176 |
0.545 |
54.489 |
176 |
0.545 |
54.489 |
| (91,166] |
84 |
0.260 |
26.006 |
260 |
0.805 |
80.495 |
| (166,241] |
24 |
0.074 |
7.430 |
284 |
0.879 |
87.926 |
| (241,316] |
18 |
0.056 |
5.573 |
302 |
0.935 |
93.498 |
| (316,391] |
9 |
0.028 |
2.786 |
311 |
0.963 |
96.285 |
| (391,466] |
5 |
0.015 |
1.548 |
316 |
0.978 |
97.833 |
| (466,541] |
2 |
0.006 |
0.619 |
318 |
0.985 |
98.452 |
| (541,616] |
4 |
0.012 |
1.238 |
322 |
0.997 |
99.690 |
| (616,691] |
0 |
0.000 |
0.000 |
322 |
0.997 |
99.690 |
| (691,767] |
1 |
0.003 |
0.310 |
323 |
1.000 |
100.000 |
resultados <- Tabla.frec(datos, "GGT")
kable(resultados, caption = "Tabla de frecuencia GGT")
Tabla de frecuencia GGT
| (10.1,199] |
280 |
0.867 |
86.687 |
280 |
0.867 |
86.687 |
| (199,386] |
29 |
0.090 |
8.978 |
309 |
0.957 |
95.666 |
| (386,574] |
8 |
0.025 |
2.477 |
317 |
0.981 |
98.142 |
| (574,761] |
4 |
0.012 |
1.238 |
321 |
0.994 |
99.381 |
| (761,948] |
1 |
0.003 |
0.310 |
322 |
0.997 |
99.690 |
| (948,1.14e+03] |
0 |
0.000 |
0.000 |
322 |
0.997 |
99.690 |
| (1.14e+03,1.32e+03] |
0 |
0.000 |
0.000 |
322 |
0.997 |
99.690 |
| (1.32e+03,1.51e+03] |
0 |
0.000 |
0.000 |
322 |
0.997 |
99.690 |
| (1.51e+03,1.7e+03] |
0 |
0.000 |
0.000 |
322 |
0.997 |
99.690 |
| (1.7e+03,1.89e+03] |
1 |
0.003 |
0.310 |
323 |
1.000 |
100.000 |
resultados <- Tabla.frec(datos, "Fosfatasa.Alcalina")
kable(resultados, caption = "Tabla de frecuencia Fosfatasa Alcalina")
Tabla de frecuencia Fosfatasa Alcalina
| (26.5,73.5] |
94 |
0.291 |
29.102 |
94 |
0.291 |
29.102 |
| (73.5,120] |
142 |
0.440 |
43.963 |
236 |
0.731 |
73.065 |
| (120,166] |
57 |
0.176 |
17.647 |
293 |
0.907 |
90.712 |
| (166,213] |
16 |
0.050 |
4.954 |
309 |
0.957 |
95.666 |
| (213,260] |
7 |
0.022 |
2.167 |
316 |
0.978 |
97.833 |
| (260,306] |
3 |
0.009 |
0.929 |
319 |
0.988 |
98.762 |
| (306,352] |
2 |
0.006 |
0.619 |
321 |
0.994 |
99.381 |
| (352,399] |
0 |
0.000 |
0.000 |
321 |
0.994 |
99.381 |
| (399,446] |
1 |
0.003 |
0.310 |
322 |
0.997 |
99.690 |
| (446,492] |
1 |
0.003 |
0.310 |
323 |
1.000 |
100.000 |
resultados <- Tabla.frec(datos, "bilirrubina.total")
kable(resultados, caption = "Tabla de frecuencia Bilirrubina total")
Tabla de frecuencia Bilirrubina total
| (0.222,1.04] |
184 |
0.570 |
56.966 |
184 |
0.570 |
56.966 |
| (1.04,1.84] |
109 |
0.337 |
33.746 |
293 |
0.907 |
90.712 |
| (1.84,2.65] |
18 |
0.056 |
5.573 |
311 |
0.963 |
96.285 |
| (2.65,3.46] |
6 |
0.019 |
1.858 |
317 |
0.981 |
98.142 |
| (3.46,4.27] |
3 |
0.009 |
0.929 |
320 |
0.991 |
99.071 |
| (4.27,5.07] |
0 |
0.000 |
0.000 |
320 |
0.991 |
99.071 |
| (5.07,5.88] |
0 |
0.000 |
0.000 |
320 |
0.991 |
99.071 |
| (5.88,6.69] |
1 |
0.003 |
0.310 |
321 |
0.994 |
99.381 |
| (6.69,7.49] |
1 |
0.003 |
0.310 |
322 |
0.997 |
99.690 |
| (7.49,8.31] |
1 |
0.003 |
0.310 |
323 |
1.000 |
100.000 |
resultados <- Tabla.frec(datos, "proteínas.totales")
kable(resultados, caption = "Tabla de frecuencia Proteínas totales")
Tabla de frecuencia Proteínas totales
| (4.6,5.05] |
1 |
0.003 |
0.310 |
1 |
0.003 |
0.310 |
| (5.05,5.5] |
3 |
0.009 |
0.929 |
4 |
0.012 |
1.238 |
| (5.5,5.95] |
3 |
0.009 |
0.929 |
7 |
0.022 |
2.167 |
| (5.95,6.4] |
17 |
0.053 |
5.263 |
24 |
0.074 |
7.430 |
| (6.4,6.85] |
77 |
0.238 |
23.839 |
101 |
0.313 |
31.269 |
| (6.85,7.3] |
108 |
0.334 |
33.437 |
209 |
0.647 |
64.706 |
| (7.3,7.75] |
66 |
0.204 |
20.433 |
275 |
0.851 |
85.139 |
| (7.75,8.2] |
36 |
0.111 |
11.146 |
311 |
0.963 |
96.285 |
| (8.2,8.65] |
10 |
0.031 |
3.096 |
321 |
0.994 |
99.381 |
| (8.65,9.1] |
2 |
0.006 |
0.619 |
323 |
1.000 |
100.000 |
resultados <- Tabla.frec(datos, "albúmina")
kable(resultados, caption = "Tabla de frecuencia Albúmina")
Tabla de frecuencia Albúmina
| (2.59,3.11] |
6 |
0.019 |
1.858 |
6 |
0.019 |
1.858 |
| (3.11,3.62] |
20 |
0.062 |
6.192 |
26 |
0.080 |
8.050 |
| (3.62,4.13] |
93 |
0.288 |
28.793 |
119 |
0.368 |
36.842 |
| (4.13,4.64] |
163 |
0.505 |
50.464 |
282 |
0.873 |
87.307 |
| (4.64,5.15] |
39 |
0.121 |
12.074 |
321 |
0.994 |
99.381 |
| (5.15,5.66] |
1 |
0.003 |
0.310 |
322 |
0.997 |
99.690 |
| (5.66,6.17] |
0 |
0.000 |
0.000 |
322 |
0.997 |
99.690 |
| (6.17,6.68] |
0 |
0.000 |
0.000 |
322 |
0.997 |
99.690 |
| (6.68,7.19] |
0 |
0.000 |
0.000 |
322 |
0.997 |
99.690 |
| (7.19,7.71] |
1 |
0.003 |
0.310 |
323 |
1.000 |
100.000 |
resultados <- Tabla.frec(datos, "sodio")
kable(resultados, caption = "Tabla de frecuencia Sodio")
Tabla de frecuencia Sodio
| (128,130] |
2 |
0.006 |
0.619 |
2 |
0.006 |
0.619 |
| (130,132] |
3 |
0.009 |
0.929 |
5 |
0.015 |
1.548 |
| (132,135] |
4 |
0.012 |
1.238 |
9 |
0.028 |
2.786 |
| (135,137] |
30 |
0.093 |
9.288 |
39 |
0.121 |
12.074 |
| (137,139] |
99 |
0.307 |
30.650 |
138 |
0.427 |
42.724 |
| (139,141] |
108 |
0.334 |
33.437 |
246 |
0.762 |
76.161 |
| (141,143] |
43 |
0.133 |
13.313 |
289 |
0.895 |
89.474 |
| (143,146] |
32 |
0.099 |
9.907 |
321 |
0.994 |
99.381 |
| (146,148] |
1 |
0.003 |
0.310 |
322 |
0.997 |
99.690 |
| (148,150] |
1 |
0.003 |
0.310 |
323 |
1.000 |
100.000 |
resultados <- Tabla.frec(datos, "potasio")
kable(resultados, caption = "Tabla de frecuencia Potasio")
Tabla de frecuencia Potasio
| (3.4,3.66] |
4 |
0.012 |
1.238 |
4 |
0.012 |
1.238 |
| (3.66,3.92] |
21 |
0.065 |
6.502 |
25 |
0.077 |
7.740 |
| (3.92,4.18] |
33 |
0.102 |
10.217 |
58 |
0.180 |
17.957 |
| (4.18,4.44] |
85 |
0.263 |
26.316 |
143 |
0.443 |
44.272 |
| (4.44,4.7] |
89 |
0.276 |
27.554 |
232 |
0.718 |
71.827 |
| (4.7,4.96] |
42 |
0.130 |
13.003 |
274 |
0.848 |
84.830 |
| (4.96,5.22] |
27 |
0.084 |
8.359 |
301 |
0.932 |
93.189 |
| (5.22,5.48] |
8 |
0.025 |
2.477 |
309 |
0.957 |
95.666 |
| (5.48,5.74] |
8 |
0.025 |
2.477 |
317 |
0.981 |
98.142 |
| (5.74,6] |
6 |
0.019 |
1.858 |
323 |
1.000 |
100.000 |
resultados <- Tabla.frec(datos, "leucocitos")
kable(resultados, caption = "Tabla de frecuencia Leucocitos")
Tabla de frecuencia Leucocitos
| (1.69e+03,2.79e+03] |
19 |
0.059 |
5.882 |
19 |
0.059 |
5.882 |
| (2.79e+03,3.89e+03] |
53 |
0.164 |
16.409 |
72 |
0.223 |
22.291 |
| (3.89e+03,4.98e+03] |
65 |
0.201 |
20.124 |
137 |
0.424 |
42.415 |
| (4.98e+03,6.08e+03] |
65 |
0.201 |
20.124 |
202 |
0.625 |
62.539 |
| (6.08e+03,7.17e+03] |
54 |
0.167 |
16.718 |
256 |
0.793 |
79.257 |
| (7.17e+03,8.26e+03] |
39 |
0.121 |
12.074 |
295 |
0.913 |
91.331 |
| (8.26e+03,9.36e+03] |
14 |
0.043 |
4.334 |
309 |
0.957 |
95.666 |
| (9.36e+03,1.05e+04] |
7 |
0.022 |
2.167 |
316 |
0.978 |
97.833 |
| (1.05e+04,1.15e+04] |
4 |
0.012 |
1.238 |
320 |
0.991 |
99.071 |
| (1.15e+04,1.27e+04] |
3 |
0.009 |
0.929 |
323 |
1.000 |
100.000 |
resultados <- Tabla.frec(datos, "hematocrito")
kable(resultados, caption = "Tabla de frecuencia Hematocrito")
Tabla de frecuencia Hematocrito
| (24,27.3] |
1 |
0.003 |
0.310 |
1 |
0.003 |
0.310 |
| (27.3,30.6] |
3 |
0.009 |
0.929 |
4 |
0.012 |
1.238 |
| (30.6,33.9] |
8 |
0.025 |
2.477 |
12 |
0.037 |
3.715 |
| (33.9,37.2] |
49 |
0.152 |
15.170 |
61 |
0.189 |
18.885 |
| (37.2,40.5] |
82 |
0.254 |
25.387 |
143 |
0.443 |
44.272 |
| (40.5,43.8] |
78 |
0.241 |
24.149 |
221 |
0.684 |
68.421 |
| (43.8,47.1] |
72 |
0.223 |
22.291 |
293 |
0.907 |
90.712 |
| (47.1,50.4] |
23 |
0.071 |
7.121 |
316 |
0.978 |
97.833 |
| (50.4,53.7] |
4 |
0.012 |
1.238 |
320 |
0.991 |
99.071 |
| (53.7,57] |
3 |
0.009 |
0.929 |
323 |
1.000 |
100.000 |
resultados <- Tabla.frec(datos, "plaquetas")
kable(resultados, caption = "Tabla de frecuencia Plaquetas")
Tabla de frecuencia Plaquetas
| (9.71e+03,3.87e+04] |
3 |
0.009 |
0.929 |
3 |
0.009 |
0.929 |
| (3.87e+04,6.74e+04] |
12 |
0.037 |
3.715 |
15 |
0.046 |
4.644 |
| (6.74e+04,9.61e+04] |
35 |
0.108 |
10.836 |
50 |
0.155 |
15.480 |
| (9.61e+04,1.25e+05] |
80 |
0.248 |
24.768 |
130 |
0.402 |
40.248 |
| (1.25e+05,1.54e+05] |
69 |
0.214 |
21.362 |
199 |
0.616 |
61.610 |
| (1.54e+05,1.82e+05] |
68 |
0.211 |
21.053 |
267 |
0.827 |
82.663 |
| (1.82e+05,2.11e+05] |
31 |
0.096 |
9.598 |
298 |
0.923 |
92.260 |
| (2.11e+05,2.4e+05] |
15 |
0.046 |
4.644 |
313 |
0.969 |
96.904 |
| (2.4e+05,2.68e+05] |
9 |
0.028 |
2.786 |
322 |
0.997 |
99.690 |
| (2.68e+05,2.97e+05] |
1 |
0.003 |
0.310 |
323 |
1.000 |
100.000 |
resultados <- Tabla.frec(datos, "Índice.de.Quick")
kable(resultados, caption = "Tabla de frecuencia Índice de Quick")
Tabla de frecuencia Índice de Quick
| (44.9,52.3] |
1 |
0.003 |
0.310 |
1 |
0.003 |
0.310 |
| (52.3,59.6] |
4 |
0.012 |
1.238 |
5 |
0.015 |
1.548 |
| (59.6,66.9] |
3 |
0.009 |
0.929 |
8 |
0.025 |
2.477 |
| (66.9,74.2] |
4 |
0.012 |
1.238 |
12 |
0.037 |
3.715 |
| (74.2,81.5] |
13 |
0.040 |
4.025 |
25 |
0.077 |
7.740 |
| (81.5,88.8] |
18 |
0.056 |
5.573 |
43 |
0.133 |
13.313 |
| (88.8,96.1] |
39 |
0.121 |
12.074 |
82 |
0.254 |
25.387 |
| (96.1,103] |
240 |
0.743 |
74.303 |
322 |
0.997 |
99.690 |
| (103,111] |
0 |
0.000 |
0.000 |
322 |
0.997 |
99.690 |
| (111,118] |
1 |
0.003 |
0.310 |
323 |
1.000 |
100.000 |
resultados <- Tabla.frec(datos, "fibrinógeno")
kable(resultados, caption = "Tabla de frecuencia Fibrinógeno")
Tabla de frecuencia Fibrinógeno
| (123,172] |
13 |
0.040 |
4.037 |
13 |
0.040 |
4.037 |
| (172,220] |
48 |
0.149 |
14.907 |
61 |
0.189 |
18.944 |
| (220,269] |
98 |
0.304 |
30.435 |
159 |
0.494 |
49.379 |
| (269,318] |
90 |
0.280 |
27.950 |
249 |
0.773 |
77.329 |
| (318,366] |
47 |
0.146 |
14.596 |
296 |
0.919 |
91.925 |
| (366,415] |
15 |
0.047 |
4.658 |
311 |
0.966 |
96.584 |
| (415,464] |
7 |
0.022 |
2.174 |
318 |
0.988 |
98.758 |
| (464,513] |
1 |
0.003 |
0.311 |
319 |
0.991 |
99.068 |
| (513,561] |
2 |
0.006 |
0.621 |
321 |
0.997 |
99.689 |
| (561,610] |
1 |
0.003 |
0.311 |
322 |
1.000 |
100.000 |