# Data:
head(cars)
## speed dist
## 1 4 2
## 2 4 10
## 3 7 4
## 4 7 22
## 5 8 16
## 6 9 10
summary(cars)
## speed dist
## Min. : 4.0 Min. : 2.00
## 1st Qu.:12.0 1st Qu.: 26.00
## Median :15.0 Median : 36.00
## Mean :15.4 Mean : 42.98
## 3rd Qu.:19.0 3rd Qu.: 56.00
## Max. :25.0 Max. :120.00
# Build the model:
lm_mod <- lm(speed ~ dist, data = cars)
# Visual of 02 variables speed and stopping distance:
plot(cars$dist, cars$speed, xlab = "Stopping Distance(ft)", ylab = "Speed(mph)")
abline(lm_mod)
#Evaluate the model:
summary(lm_mod)
##
## Call:
## lm(formula = speed ~ dist, data = cars)
##
## Residuals:
## Min 1Q Median 3Q Max
## -7.5293 -2.1550 0.3615 2.4377 6.4179
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 8.28391 0.87438 9.474 1.44e-12 ***
## dist 0.16557 0.01749 9.464 1.49e-12 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 3.156 on 48 degrees of freedom
## Multiple R-squared: 0.6511, Adjusted R-squared: 0.6438
## F-statistic: 89.57 on 1 and 48 DF, p-value: 1.49e-12
\[y=8.28+0.16(dist)\] R-squared: 0.6511= 65.1% of the data
#residual plot:
plot(lm_mod$fitted.values, lm_mod$residuals, xlab = "Fitted", ylab = "Residuals")
abline(h = 0)
#QQ plot:
qqnorm(lm_mod$residuals)
qqline(lm_mod$residuals)
QQ plot show that the majority of the points are approximately on the normal line.
par(mfrow = c(2, 2))
plot(lm_mod)
High R-squared 65.1%, there is a small p-value, the majority of the points on the QQ plot fall along the normal line means our model is good model.