Healthy Cities GIS Assignment

Author

Annet Isa

CDC PLACES Dataset

Load the libraries and set the working directory

library(tidyverse)
library(tidyr)
setwd("C:/Users/bombshellnoir/Dropbox (Personal)/00000 Montgomery College/DATA 110")
cities500 <- read_csv("500CitiesLocalHealthIndicators.cdc.csv")

The GeoLocation variable has (lat, long) format

Split GeoLocation (lat, long) into two columns: lat and long

latlong <- cities500|>
  mutate(GeoLocation = str_replace_all(GeoLocation, "[()]", ""))|>
  separate(GeoLocation, into = c("lat", "long"), sep = ",", convert = TRUE)
head(latlong)
# A tibble: 6 × 25
   Year StateAbbr StateDesc  CityName  GeographicLevel DataSource Category      
  <dbl> <chr>     <chr>      <chr>     <chr>           <chr>      <chr>         
1  2017 CA        California Hawthorne Census Tract    BRFSS      Health Outcom…
2  2017 CA        California Hawthorne City            BRFSS      Unhealthy Beh…
3  2017 CA        California Hayward   City            BRFSS      Health Outcom…
4  2017 CA        California Hayward   City            BRFSS      Unhealthy Beh…
5  2017 CA        California Hemet     City            BRFSS      Prevention    
6  2017 CA        California Indio     Census Tract    BRFSS      Health Outcom…
# ℹ 18 more variables: UniqueID <chr>, Measure <chr>, Data_Value_Unit <chr>,
#   DataValueTypeID <chr>, Data_Value_Type <chr>, Data_Value <dbl>,
#   Low_Confidence_Limit <dbl>, High_Confidence_Limit <dbl>,
#   Data_Value_Footnote_Symbol <chr>, Data_Value_Footnote <chr>,
#   PopulationCount <dbl>, lat <dbl>, long <dbl>, CategoryID <chr>,
#   MeasureId <chr>, CityFIPS <dbl>, TractFIPS <dbl>, Short_Question_Text <chr>

Filter the dataset

Remove the StateDesc that includes the United Sates, select Prevention as the category (of interest), filter for only measuring crude prevalence and select only 2017.

latlong_clean <- latlong |>
  filter(StateDesc != "United States") |>
  filter(Category == "Prevention") |>
  filter(Data_Value_Type == "Crude prevalence") |>
  filter(Year == 2017)
head(latlong_clean)
# A tibble: 6 × 25
   Year StateAbbr StateDesc  CityName   GeographicLevel DataSource Category  
  <dbl> <chr>     <chr>      <chr>      <chr>           <chr>      <chr>     
1  2017 AL        Alabama    Montgomery City            BRFSS      Prevention
2  2017 CA        California Concord    City            BRFSS      Prevention
3  2017 CA        California Concord    City            BRFSS      Prevention
4  2017 CA        California Fontana    City            BRFSS      Prevention
5  2017 CA        California Richmond   Census Tract    BRFSS      Prevention
6  2017 FL        Florida    Davie      Census Tract    BRFSS      Prevention
# ℹ 18 more variables: UniqueID <chr>, Measure <chr>, Data_Value_Unit <chr>,
#   DataValueTypeID <chr>, Data_Value_Type <chr>, Data_Value <dbl>,
#   Low_Confidence_Limit <dbl>, High_Confidence_Limit <dbl>,
#   Data_Value_Footnote_Symbol <chr>, Data_Value_Footnote <chr>,
#   PopulationCount <dbl>, lat <dbl>, long <dbl>, CategoryID <chr>,
#   MeasureId <chr>, CityFIPS <dbl>, TractFIPS <dbl>, Short_Question_Text <chr>

What variables are included? (can any of them be removed?)

names(latlong_clean)
 [1] "Year"                       "StateAbbr"                 
 [3] "StateDesc"                  "CityName"                  
 [5] "GeographicLevel"            "DataSource"                
 [7] "Category"                   "UniqueID"                  
 [9] "Measure"                    "Data_Value_Unit"           
[11] "DataValueTypeID"            "Data_Value_Type"           
[13] "Data_Value"                 "Low_Confidence_Limit"      
[15] "High_Confidence_Limit"      "Data_Value_Footnote_Symbol"
[17] "Data_Value_Footnote"        "PopulationCount"           
[19] "lat"                        "long"                      
[21] "CategoryID"                 "MeasureId"                 
[23] "CityFIPS"                   "TractFIPS"                 
[25] "Short_Question_Text"       

Remove the variables that will not be used in the assignment

prevention <- latlong_clean |>
  select(-DataSource,-Data_Value_Unit, -DataValueTypeID, -Low_Confidence_Limit, -High_Confidence_Limit, -Data_Value_Footnote_Symbol, -Data_Value_Footnote)
head(prevention)
# A tibble: 6 × 18
   Year StateAbbr StateDesc  CityName  GeographicLevel Category UniqueID Measure
  <dbl> <chr>     <chr>      <chr>     <chr>           <chr>    <chr>    <chr>  
1  2017 AL        Alabama    Montgome… City            Prevent… 151000   Choles…
2  2017 CA        California Concord   City            Prevent… 616000   Visits…
3  2017 CA        California Concord   City            Prevent… 616000   Choles…
4  2017 CA        California Fontana   City            Prevent… 624680   Visits…
5  2017 CA        California Richmond  Census Tract    Prevent… 0660620… Choles…
6  2017 FL        Florida    Davie     Census Tract    Prevent… 1216475… Choles…
# ℹ 10 more variables: Data_Value_Type <chr>, Data_Value <dbl>,
#   PopulationCount <dbl>, lat <dbl>, long <dbl>, CategoryID <chr>,
#   MeasureId <chr>, CityFIPS <dbl>, TractFIPS <dbl>, Short_Question_Text <chr>
md <- prevention |>
  filter(StateAbbr=="MD")
head(md)
# A tibble: 6 × 18
   Year StateAbbr StateDesc CityName  GeographicLevel Category  UniqueID Measure
  <dbl> <chr>     <chr>     <chr>     <chr>           <chr>     <chr>    <chr>  
1  2017 MD        Maryland  Baltimore Census Tract    Preventi… 2404000… "Chole…
2  2017 MD        Maryland  Baltimore Census Tract    Preventi… 2404000… "Visit…
3  2017 MD        Maryland  Baltimore Census Tract    Preventi… 2404000… "Visit…
4  2017 MD        Maryland  Baltimore Census Tract    Preventi… 2404000… "Curre…
5  2017 MD        Maryland  Baltimore Census Tract    Preventi… 2404000… "Curre…
6  2017 MD        Maryland  Baltimore Census Tract    Preventi… 2404000… "Visit…
# ℹ 10 more variables: Data_Value_Type <chr>, Data_Value <dbl>,
#   PopulationCount <dbl>, lat <dbl>, long <dbl>, CategoryID <chr>,
#   MeasureId <chr>, CityFIPS <dbl>, TractFIPS <dbl>, Short_Question_Text <chr>

The new dataset “Prevention” is a manageable dataset now.

For your assignment, work with the cleaned “Prevention” dataset

1. Once you run the above code, filter this dataset one more time for any particular subset.

Filter chunk here

unique(latlong_clean$StateAbbr)
 [1] "AL" "CA" "FL" "CT" "IL" "MN" "NY" "PA" "NC" "OH" "OK" "OR" "TX" "RI" "SC"
[16] "SD" "TN" "UT" "VA" "WA" "AK" "WI" "AZ" "AR" "CO" "DE" "NV" "DC" "GA" "ID"
[31] "HI" "MA" "MI" "IN" "KS" "KY" "IA" "LA" "MD" "ME" "NH" "NJ" "NM" "MO" "MS"
[46] "NE" "MT" "ND" "WV" "VT" "WY"
dmv <- prevention %>%
  filter(StateAbbr %in% c("DC", "MD", "VA"))
head(dmv)
# A tibble: 6 × 18
   Year StateAbbr StateDesc CityName   GeographicLevel Category UniqueID Measure
  <dbl> <chr>     <chr>     <chr>      <chr>           <chr>    <chr>    <chr>  
1  2017 VA        Virginia  Alexandria Census Tract    Prevent… 5101000… Taking…
2  2017 VA        Virginia  Lynchburg  Census Tract    Prevent… 5147672… Taking…
3  2017 VA        Virginia  Norfolk    Census Tract    Prevent… 5157000… Taking…
4  2017 VA        Virginia  Norfolk    Census Tract    Prevent… 5157000… Visits…
5  2017 VA        Virginia  Norfolk    Census Tract    Prevent… 5157000… Choles…
6  2017 VA        Virginia  Richmond   City            Prevent… 5167000  Choles…
# ℹ 10 more variables: Data_Value_Type <chr>, Data_Value <dbl>,
#   PopulationCount <dbl>, lat <dbl>, long <dbl>, CategoryID <chr>,
#   MeasureId <chr>, CityFIPS <dbl>, TractFIPS <dbl>, Short_Question_Text <chr>

ggplot(quakes, aes(x=depth, y=mag, color = magType)) + geom_point(alpha = 0.1) + scale_color_viridis_d() + geom_jitter() + labs(title = “Earthquakes in Japan by Magnitude Type”, caption = “Source: USGS”) + theme_bw() ### 2. Based on the GIS tutorial (Japan earthquakes), create one plot about something in your subsetted dataset.

First plot chunk here

plot1 <- ggplot(dmv, aes(x= MeasureId, y= Data_Value, color = StateAbbr)) +
  geom_point(alpha = 0.1) +
  geom_jitter() +
  labs(title = "Preventative Measures in the DMV",
       caption = "Source: CDC",
       color = "State") +
  ylab("Population Percentage with High Blood Pressure\nTaking BP Meds") +
  xlab("Preventative Measure")

plot1
Warning: Removed 15 rows containing missing values (`geom_point()`).
Removed 15 rows containing missing values (`geom_point()`).

Virginia’s rates regarding blood pressure medication usage fluctuates widely. Let’s explore this more.

3. Now create a map of your subsetted dataset.

First map chunk here

library(leaflet)
Warning: package 'leaflet' was built under R version 4.3.3
library(sf)
Warning: package 'sf' was built under R version 4.3.3
Linking to GEOS 3.11.2, GDAL 3.8.2, PROJ 9.3.1; sf_use_s2() is TRUE
bpmeds <- dmv %>%
  filter(MeasureId == "BPMED") %>%
  filter(StateAbbr == "VA") %>%
  filter(Data_Value <= 55)

leaflet() %>%
  setView(lat = 37.4316, lng = -77.0470, zoom = 7) %>%
  addProviderTiles("Esri.NatGeoWorldMap") %>%
  addCircles(
    data = bpmeds,
    radius = ~Data_Value*20,
    color = "purple"
  )
Assuming "long" and "lat" are longitude and latitude, respectively

4. Refine your map to include a mousover tooltip

Refined map chunk here

bp_popup <- paste0(
  "<b>City: </b>", bpmeds$CityName, "<br>",
  "<b>Level: </b>", bpmeds$GeographicLevel, "<br>",
  "<b>BP Med Usage: </b>", bpmeds$Data_Value, "%<br>"
  )


leaflet() %>%
  setView(lat = 36.5049, lng = -76.1707, zoom = 9) %>%
  addProviderTiles("Esri.NatGeoWorldMap") %>%
  addCircles(
    data = bpmeds,
    radius = ~Data_Value*20,
    color = "purple",
    popup = bp_popup
  )
Assuming "long" and "lat" are longitude and latitude, respectively

5. Write a paragraph

In a paragraph, describe the plots you created and what they show. ________________

My first plot is exploratory – are there any correlations in the DMV filtered dataset? In the scatterplot of the four preventative measures, most data points are clustered together – except for the trailing points regarding Virginia’s blood pressure med usage. According to the CDC, “approximately half (47%) of persons with high blood pressure have their condition under control” (1). My map examines the distribution of the half of the population that do not control their high blood pressure with medication. The initial plot suggests that there is an overlap with lack of access to health insurance and not taking high blood pressure medication. I do not know enough about Virginia to determine if the highlighted locations have a lower or higher cost of living than the locations with much higher compliance regarding high blood pressure medication.

  1. CDC. Vital signs: awareness and treatment of uncontrolled hypertension among adults—United States, 2003–2010. MMWR 2012;61:703–9.