Library
library(AppliedPredictiveModeling)
library(caret)
library(corrplot)
corrplot 0.92 loaded
library(earth)
library(fpp3)
library(dplyr)
library(ggplot2)
library(mlbench)
library(RANN)
library(tidyr)
Description
Do problems 7.2 and 7.5 in Kuhn and Johnson. There are only two but
they have many parts. Please submit both a link to your Rpubs and the
.rmd file.
7.2
Friedman (1991) introduced several benchmark data sets create by
simulation One of these simulations used the following nonlinear
equation to create data:
\(y=10sin(\pi1x_1x_2)+20(x_3-0.5)^2+10x_4+5x_5+N(0,\sigma^2)\)
where the x values are random variables uniformly
distributed between [0, 1] (there are also 5 other non-informative
variables also created in the simulation). The package
mlbench contains a function called
mlbench.friedman1 that simulates these data:
set.seed(200)
trainingData <- mlbench.friedman1(200, sd = 1)
## We convert the 'x' data from a matrix to a data frame
## One reason is that this will give the columns names.
trainingData$x <- data.frame(trainingData$x)
## Look at the data using
featurePlot(trainingData$x, trainingData$y)

## or other methods.
## This creates a list with a vector 'y' and a matrix
## of predictors 'x'. Also simulate a large test set to
## estimate the true error rate with good precision:
testData <- mlbench.friedman1(5000, sd = 1)
testData$x <- data.frame(testData$x)
i
Example
Tune several models on these data. For example:
knnModel <- train(x = trainingData$x,
y = trainingData$y,
method = "knn",
preProc = c("center", "scale"),
tuneLength = 10)
knnModel
k-Nearest Neighbors
200 samples
10 predictor
Pre-processing: centered (10), scaled (10)
Resampling: Bootstrapped (25 reps)
Summary of sample sizes: 200, 200, 200, 200, 200, 200, ...
Resampling results across tuning parameters:
k RMSE Rsquared MAE
5 3.466085 0.5121775 2.816838
7 3.349428 0.5452823 2.727410
9 3.264276 0.5785990 2.660026
11 3.214216 0.6024244 2.603767
13 3.196510 0.6176570 2.591935
15 3.184173 0.6305506 2.577482
17 3.183130 0.6425367 2.567787
19 3.198752 0.6483184 2.592683
21 3.188993 0.6611428 2.588787
23 3.200458 0.6638353 2.604529
RMSE was used to select the optimal model using the smallest value.
The final value used for the model was k = 17.
RMSE was used to select the optimal model using the smallest value.
The final value used for the model was k = 19.
knnPred <- predict(knnModel, newdata = testData$x)
## The function 'postResample' can be used to get the test set
## perforamnce values
postResample(pred = knnPred, obs = testData$y)
RMSE Rsquared MAE
3.2040595 0.6819919 2.5683461
MARS & MARS TUNED
MARS
mars_Grid <- expand.grid(.degree = 1:2, .nprune = 2:38)
set.seed(100)
mars_Fit <- earth(trainingData$x, trainingData$y)
mars_Pred <- predict(mars_Fit, newdata = testData$x)
postResample(pred = mars_Pred, obs = testData$y)
RMSE Rsquared MAE
1.8136467 0.8677298 1.3911836
MARS Tuned
marsTuned_Grid <- expand.grid(.degree = 1:2, .nprune = 2:38)
set.seed(100)
marsTuned <- train(trainingData$x, trainingData$y, method = "earth",
tuneGrid = marsTuned_Grid,
trControl = trainControl(method = "cv"))
marsTune_Pred <- predict(marsTuned, newdata = testData$x)
postResample(pred = marsTune_Pred, obs = testData$y)
RMSE Rsquared MAE
1.1589948 0.9460418 0.9250230
SVM Tuned
svmRTuned <- train(trainingData$x, trainingData$y,
method = "svmRadial",
preProcess = c("center", "scale"),
tuneLength = 15,
trControl = trainControl(method = "cv"))
svmPred <- predict(svmRTuned, newdata = testData$x)
postResample(svmPred, testData$y)
RMSE Rsquared MAE
2.0741473 0.8255848 1.5755185
ii
Which models appear to give the best performance?
MAR tuned model with an R-squared value of 0.9460 looks like its the
best performing.
iii
Does MARS select the informative predictors (those named X1–X5)?
Yes it selects for informative predictors
7.5
Exercise 6.3 describes data for a chemical manufacturing process. Use
the same data imputation, data splitting, and pre-processing steps as
before and train several nonlinear regression models.
Load Data
data(ChemicalManufacturingProcess)
data imputation, data splitting & pre-processing
impute
imputed_df <- preProcess(ChemicalManufacturingProcess, "knnImpute")
imputed_full_df <- predict(imputed_df, ChemicalManufacturingProcess)
val_low <- nearZeroVar(imputed_full_df)
#remove low frequency columns using baser df[row,columns]
chem_df <- imputed_full_df[,-val_low]
split
chem_index <- createDataPartition(chem_df$Yield , p=.8, list=F)
chem_train <- chem_df[chem_index,]
chem_test <- chem_df[-chem_index,]
chem_marsGrid <- expand.grid(.degree = 1:2, .nprune = 2:38)
(a)
Which nonlinear regression model gives the optimal resampling and
test set performance?
MARS Tuned
chem_MarsTuned <- train(Yield~. ,
data = chem_train,
method = "earth",
tuneGrid = chem_marsGrid,
trControl = trainControl(method = "cv"))
chem_MarsTunePred <- predict(chem_MarsTuned, chem_test)
postResample(chem_MarsTunePred, chem_test$Yield)
RMSE Rsquared MAE
0.6437705 0.5394597 0.4739508
SVM Tuned
chem_SVMTuned <- train(Yield~. ,
data = chem_test,
method = "svmRadial",
tuneLength = 15,
trControl = trainControl(method = "cv"))
chem_SVMTunePred <- predict(chem_SVMTuned, chem_test)
postResample(chem_SVMTunePred, chem_test$Yield)
RMSE Rsquared MAE
0.09178983 0.99520810 0.09087154
KNN
knnModel <- train(Yield~.,
data = chem_test,
method = "knn",
preProc = c("center", "scale"),
tuneLength = 10)
knnPred <- predict(knnModel, chem_test)
postResample(pred = knnPred, obs = chem_test$Yield)
RMSE Rsquared MAE
0.7631649 0.4717384 0.6279725
Neural Network
nnetGrid <- expand.grid(.decay = c(0, 0.01, .1),
.size = c(1:10), .bag = FALSE)
nnetTune <- train(Yield~.,
data = chem_train,
method = "avNNet",
tuneGrid = nnetGrid,
trControl = trainControl(method = "cv"),
linout = TRUE,trace = FALSE,
MaxNWts = 10 * (ncol(chem_train) + 1) + 10 + 1,
maxit = 500)
nnetPred <- predict(nnetTune, chem_test)
postResample(predict(nnetTune, chem_test), chem_test$Yield)
RMSE Rsquared MAE
0.6145770 0.6353956 0.4907860
The SVM tuned is the best performing RMSE and R squared with values
of RMSE=0.09178983 , and R squared=0.99520810
(b)
Which predictors are most important in the optimal nonlinear
regression model? Do either the biological or process variables dominate
the list?How do the top ten important predictors compare to the top ten
predictors from the optimal linear model?
Of the 20 ManufacturingProcess predictors 12 are
BiologicalMaterial and 8 are
ManufacturingProcess. In the top 10, 6 are
ManufacturingProcess in with 1rst through 3rd being
ManufacturingProcess32,
ManufacturingProcess36, and
ManufacturingProcess05. Although neither dominates,
ManufacturingProcess does hold a greater influence overall, when
compared to the ratio of optimal nonlinear vs optimal linear, in optimal
linear, ManuracturingProcess importance is greater.
plot(varImp(chem_SVMTuned), top=10)
Warning: pseudoinverse used at 0.019411Warning: neighborhood radius 0.44646Warning: reciprocal condition number 1.669e-16

(c)
Explore the relationships between the top predictors and the response
for the predictors that are unique to the optimal nonlinear regression
model. Do these plots reveal intuition about the biological or process
predictors and their relationship with yield?
- Corrplot used to explore relationship
- Yield response variable doesn’t have strong correlations with most
of the important predictors noted previously.
- Strongest positive correlations exist with
ManufacturingProcess32 and
ManufacturingProcess09 (0.61 and 0.50).
- The strongest negative correlations exist with
ManufacturingProcess36 and
ManufacturingProcess13 (-0.53 and -0.50,
respectively).
- No strong correlations with Yeild and the important Biological
Material predictors identified in the previous step.
corr_vals <- chem_df %>%
dplyr::select('Yield', 'ManufacturingProcess32','ManufacturingProcess36',
'BiologicalMaterial06','ManufacturingProcess13',
'BiologicalMaterial03','ManufacturingProcess17',
'BiologicalMaterial02','BiologicalMaterial12',
'ManufacturingProcess09','ManufacturingProcess31')
corr_plot_vals <- cor(corr_vals)
corrplot.mixed(corr_plot_vals, tl.col = 'black', tl.pos = 'lt',
upper = "number", lower="circle")

LS0tDQp0aXRsZTogJ0RBVEEgNjI0OiBQUkVESUNUSVZFIEFOQUxZVElDUyBIVyA4Jw0KYXV0aG9yOiAiR2FicmllbCBDYW1wb3MiDQpkYXRlOiAiTGFzdCBlZGl0ZWQgYHIgZm9ybWF0KFN5cy50aW1lKCksICclQiAlZCwgJVknKWAiDQpvdXRwdXQ6DQogIGh0bWxfbm90ZWJvb2s6IGRlZmF1bHQNCiAgZ2VvbWV0cnk6IGxlZnQ9MC41Y20scmlnaHQ9MC41Y20sdG9wPTFjbSxib3R0b209MmNtDQogIGh0bWxfZG9jdW1lbnQ6DQogICAgZGZfcHJpbnQ6IHBhZ2VkDQogIHBkZl9kb2N1bWVudDoNCiAgICBsYXRleF9lbmdpbmU6IHhlbGF0ZXgNCnVybGNvbG9yOiBibHVlDQotLS0NCg0KIyBMaWJyYXJ5DQoNCmBgYHtyLCB3YXJuaW5nPUZBTFNFfQ0KbGlicmFyeShBcHBsaWVkUHJlZGljdGl2ZU1vZGVsaW5nKQ0KbGlicmFyeShjYXJldCkNCmxpYnJhcnkoY29ycnBsb3QpDQpsaWJyYXJ5KGVhcnRoKQ0KbGlicmFyeShmcHAzKQ0KbGlicmFyeShkcGx5cikNCmxpYnJhcnkoZ2dwbG90MikNCmxpYnJhcnkobWxiZW5jaCkNCmxpYnJhcnkoUkFOTikNCmxpYnJhcnkodGlkeXIpDQpgYGANCg0KIyBEZXNjcmlwdGlvbg0KDQpEbyBwcm9ibGVtcyA3LjIgYW5kIDcuNSBpbiBLdWhuIGFuZCBKb2huc29uLiBUaGVyZSBhcmUgb25seSB0d28gYnV0IHRoZXkgaGF2ZSBtYW55IHBhcnRzLiBQbGVhc2Ugc3VibWl0IGJvdGggYSBsaW5rIHRvIHlvdXIgUnB1YnMgYW5kIHRoZSAucm1kIGZpbGUuDQoNCiMgNy4yDQoNCkZyaWVkbWFuICgxOTkxKSBpbnRyb2R1Y2VkIHNldmVyYWwgYmVuY2htYXJrIGRhdGEgc2V0cyBjcmVhdGUgYnkgc2ltdWxhdGlvbiBPbmUgb2YgdGhlc2Ugc2ltdWxhdGlvbnMgdXNlZCB0aGUgZm9sbG93aW5nIG5vbmxpbmVhciBlcXVhdGlvbiB0bw0KY3JlYXRlIGRhdGE6IA0KDQokeT0xMHNpbihccGkxeF8xeF8yKSsyMCh4XzMtMC41KV4yKzEweF80KzV4XzUrTigwLFxzaWdtYV4yKSQNCg0Kd2hlcmUgdGhlICp4KiB2YWx1ZXMgYXJlIHJhbmRvbSB2YXJpYWJsZXMgdW5pZm9ybWx5IGRpc3RyaWJ1dGVkIGJldHdlZW4gWzAsIDFdICh0aGVyZSBhcmUgYWxzbyA1IG90aGVyIG5vbi1pbmZvcm1hdGl2ZSB2YXJpYWJsZXMgYWxzbyBjcmVhdGVkIGluIHRoZSBzaW11bGF0aW9uKS4gVGhlIHBhY2thZ2UgYG1sYmVuY2hgIGNvbnRhaW5zIGEgZnVuY3Rpb24gY2FsbGVkICoqbWxiZW5jaC5mcmllZG1hbjEqKiB0aGF0IHNpbXVsYXRlcyB0aGVzZSBkYXRhOg0KDQpgYGB7cn0NCnNldC5zZWVkKDIwMCkNCnRyYWluaW5nRGF0YSA8LSBtbGJlbmNoLmZyaWVkbWFuMSgyMDAsIHNkID0gMSkNCiMjIFdlIGNvbnZlcnQgdGhlICd4JyBkYXRhIGZyb20gYSBtYXRyaXggdG8gYSBkYXRhIGZyYW1lDQojIyBPbmUgcmVhc29uIGlzIHRoYXQgdGhpcyB3aWxsIGdpdmUgdGhlIGNvbHVtbnMgbmFtZXMuDQp0cmFpbmluZ0RhdGEkeCA8LSBkYXRhLmZyYW1lKHRyYWluaW5nRGF0YSR4KQ0KIyMgTG9vayBhdCB0aGUgZGF0YSB1c2luZw0KZmVhdHVyZVBsb3QodHJhaW5pbmdEYXRhJHgsIHRyYWluaW5nRGF0YSR5KQ0KIyMgb3Igb3RoZXIgbWV0aG9kcy4NCg0KIyMgVGhpcyBjcmVhdGVzIGEgbGlzdCB3aXRoIGEgdmVjdG9yICd5JyBhbmQgYSBtYXRyaXgNCiMjIG9mIHByZWRpY3RvcnMgJ3gnLiBBbHNvIHNpbXVsYXRlIGEgbGFyZ2UgdGVzdCBzZXQgdG8NCiMjIGVzdGltYXRlIHRoZSB0cnVlIGVycm9yIHJhdGUgd2l0aCBnb29kIHByZWNpc2lvbjoNCnRlc3REYXRhIDwtIG1sYmVuY2guZnJpZWRtYW4xKDUwMDAsIHNkID0gMSkNCnRlc3REYXRhJHggPC0gZGF0YS5mcmFtZSh0ZXN0RGF0YSR4KQ0KYGBgDQoNCg0KDQojIyBpIA0KDQojIyMgRXhhbXBsZQ0KDQpUdW5lIHNldmVyYWwgbW9kZWxzIG9uIHRoZXNlIGRhdGEuIEZvciBleGFtcGxlOg0KDQpgYGB7cn0NCmtubk1vZGVsIDwtIHRyYWluKHggPSB0cmFpbmluZ0RhdGEkeCwNCnkgPSB0cmFpbmluZ0RhdGEkeSwNCm1ldGhvZCA9ICJrbm4iLA0KcHJlUHJvYyA9IGMoImNlbnRlciIsICJzY2FsZSIpLA0KdHVuZUxlbmd0aCA9IDEwKQ0Ka25uTW9kZWwNCmBgYA0KDQpSTVNFIHdhcyB1c2VkIHRvIHNlbGVjdCB0aGUgb3B0aW1hbCBtb2RlbCB1c2luZyB0aGUgc21hbGxlc3QgdmFsdWUuDQpUaGUgZmluYWwgdmFsdWUgdXNlZCBmb3IgdGhlIG1vZGVsIHdhcyBrID0gMTkuDQoNCmBgYHtyfQ0Ka25uUHJlZCA8LSBwcmVkaWN0KGtubk1vZGVsLCBuZXdkYXRhID0gdGVzdERhdGEkeCkNCiMjIFRoZSBmdW5jdGlvbiAncG9zdFJlc2FtcGxlJyBjYW4gYmUgdXNlZCB0byBnZXQgdGhlIHRlc3Qgc2V0DQojIyBwZXJmb3JhbW5jZSB2YWx1ZXMNCnBvc3RSZXNhbXBsZShwcmVkID0ga25uUHJlZCwgb2JzID0gdGVzdERhdGEkeSkNCmBgYA0KDQojIyMgTUFSUyAmIE1BUlMgVFVORUQNCg0KIyMjIyBNQVJTDQoNCmBgYHtyfQ0KbWFyc19HcmlkIDwtIGV4cGFuZC5ncmlkKC5kZWdyZWUgPSAxOjIsIC5ucHJ1bmUgPSAyOjM4KQ0Kc2V0LnNlZWQoMTAwKQ0KDQptYXJzX0ZpdCA8LSBlYXJ0aCh0cmFpbmluZ0RhdGEkeCwgdHJhaW5pbmdEYXRhJHkpDQoNCm1hcnNfUHJlZCA8LSBwcmVkaWN0KG1hcnNfRml0LCBuZXdkYXRhID0gdGVzdERhdGEkeCkNCnBvc3RSZXNhbXBsZShwcmVkID0gbWFyc19QcmVkLCBvYnMgPSB0ZXN0RGF0YSR5KQ0KYGBgDQoNCiMjIyMgTUFSUyBUdW5lZA0KDQpgYGB7cn0NCm1hcnNUdW5lZF9HcmlkIDwtIGV4cGFuZC5ncmlkKC5kZWdyZWUgPSAxOjIsIC5ucHJ1bmUgPSAyOjM4KQ0Kc2V0LnNlZWQoMTAwKQ0KDQptYXJzVHVuZWQgPC0gdHJhaW4odHJhaW5pbmdEYXRhJHgsIHRyYWluaW5nRGF0YSR5LCBtZXRob2QgPSAiZWFydGgiLA0KICAgICAgICAgICAgICAgICAgIHR1bmVHcmlkID0gbWFyc1R1bmVkX0dyaWQsDQogICAgICAgICAgICAgICAgICAgdHJDb250cm9sID0gdHJhaW5Db250cm9sKG1ldGhvZCA9ICJjdiIpKQ0KDQptYXJzVHVuZV9QcmVkIDwtIHByZWRpY3QobWFyc1R1bmVkLCBuZXdkYXRhID0gdGVzdERhdGEkeCkNCnBvc3RSZXNhbXBsZShwcmVkID0gbWFyc1R1bmVfUHJlZCwgb2JzID0gdGVzdERhdGEkeSkNCmBgYA0KDQojIyMgU1ZNIFR1bmVkDQoNCmBgYHtyfQ0Kc3ZtUlR1bmVkIDwtIHRyYWluKHRyYWluaW5nRGF0YSR4LCB0cmFpbmluZ0RhdGEkeSwNCiAgICAgICAgICAgICAgICAgICBtZXRob2QgPSAic3ZtUmFkaWFsIiwNCiAgICAgICAgICAgICAgICAgICBwcmVQcm9jZXNzID0gYygiY2VudGVyIiwgInNjYWxlIiksDQogICAgICAgICAgICAgICAgICAgdHVuZUxlbmd0aCA9IDE1LA0KICAgICAgICAgICAgICAgICAgIHRyQ29udHJvbCA9IHRyYWluQ29udHJvbChtZXRob2QgPSAiY3YiKSkNCg0Kc3ZtUHJlZCA8LSBwcmVkaWN0KHN2bVJUdW5lZCwgbmV3ZGF0YSA9IHRlc3REYXRhJHgpDQpwb3N0UmVzYW1wbGUoc3ZtUHJlZCwgdGVzdERhdGEkeSkNCmBgYA0KDQoNCiMjIGlpDQoNCldoaWNoIG1vZGVscyBhcHBlYXIgdG8gZ2l2ZSB0aGUgYmVzdCBwZXJmb3JtYW5jZT8gDQoNCk1BUiB0dW5lZCBtb2RlbCB3aXRoIGFuIFItc3F1YXJlZCB2YWx1ZSBvZiAwLjk0NjAgbG9va3MgbGlrZSBpdHMgdGhlIGJlc3QgcGVyZm9ybWluZy4NCg0KIyMgaWlpDQoNCkRvZXMgTUFSUyBzZWxlY3QgdGhlIGluZm9ybWF0aXZlIHByZWRpY3RvcnMgKHRob3NlIG5hbWVkIFgx4oCTWDUpPw0KDQpZZXMgaXQgc2VsZWN0cyBmb3IgaW5mb3JtYXRpdmUgcHJlZGljdG9ycw0KDQojIDcuNQ0KDQpFeGVyY2lzZSA2LjMgZGVzY3JpYmVzIGRhdGEgZm9yIGEgY2hlbWljYWwgbWFudWZhY3R1cmluZyBwcm9jZXNzLiBVc2UgdGhlIHNhbWUgZGF0YSBpbXB1dGF0aW9uLCBkYXRhIHNwbGl0dGluZywgYW5kIHByZS1wcm9jZXNzaW5nIHN0ZXBzIGFzIGJlZm9yZSBhbmQgdHJhaW4gc2V2ZXJhbCBub25saW5lYXIgcmVncmVzc2lvbiBtb2RlbHMuDQoNCiMjIExvYWQgRGF0YQ0KDQpgYGB7cn0NCmRhdGEoQ2hlbWljYWxNYW51ZmFjdHVyaW5nUHJvY2VzcykNCmBgYA0KDQojIyBkYXRhIGltcHV0YXRpb24sIGRhdGEgc3BsaXR0aW5nICYgcHJlLXByb2Nlc3NpbmcNCg0KKippbXB1dGUqKg0KDQpgYGB7cn0NCmltcHV0ZWRfZGYgPC0gcHJlUHJvY2VzcyhDaGVtaWNhbE1hbnVmYWN0dXJpbmdQcm9jZXNzLCAia25uSW1wdXRlIikNCmltcHV0ZWRfZnVsbF9kZiA8LSBwcmVkaWN0KGltcHV0ZWRfZGYsIENoZW1pY2FsTWFudWZhY3R1cmluZ1Byb2Nlc3MpDQpgYGANCg0KYGBge3J9DQp2YWxfbG93IDwtIG5lYXJaZXJvVmFyKGltcHV0ZWRfZnVsbF9kZikNCiNyZW1vdmUgbG93IGZyZXF1ZW5jeSBjb2x1bW5zIHVzaW5nIGJhc2VyIGRmW3Jvdyxjb2x1bW5zXQ0KY2hlbV9kZiA8LSBpbXB1dGVkX2Z1bGxfZGZbLC12YWxfbG93XQ0KYGBgDQoNCioqc3BsaXQqKg0KDQpgYGB7cn0NCmNoZW1faW5kZXggPC0gY3JlYXRlRGF0YVBhcnRpdGlvbihjaGVtX2RmJFlpZWxkICwgcD0uOCwgbGlzdD1GKQ0KYGBgDQoNCmBgYHtyfQ0KY2hlbV90cmFpbiA8LSAgY2hlbV9kZltjaGVtX2luZGV4LF0gDQpjaGVtX3Rlc3QgPC0gY2hlbV9kZlstY2hlbV9pbmRleCxdDQpgYGANCg0KYGBge3J9DQpjaGVtX21hcnNHcmlkIDwtIGV4cGFuZC5ncmlkKC5kZWdyZWUgPSAxOjIsIC5ucHJ1bmUgPSAyOjM4KQ0KYGBgDQoNCg0KIyMgKGEpDQoNCldoaWNoIG5vbmxpbmVhciByZWdyZXNzaW9uIG1vZGVsIGdpdmVzIHRoZSBvcHRpbWFsIHJlc2FtcGxpbmcgYW5kIHRlc3Qgc2V0IHBlcmZvcm1hbmNlPw0KDQojIyMgTUFSUyBUdW5lZA0KDQpgYGB7cn0NCmNoZW1fTWFyc1R1bmVkIDwtIHRyYWluKFlpZWxkfi4gLA0KICAgICAgICAgICAgICAgICAgZGF0YSA9IGNoZW1fdHJhaW4sDQogICAgICAgICAgICAgICAgICAgbWV0aG9kID0gImVhcnRoIiwNCiAgICAgICAgICAgICAgICAgICB0dW5lR3JpZCA9IGNoZW1fbWFyc0dyaWQsDQogICAgICAgICAgICAgICAgICAgdHJDb250cm9sID0gdHJhaW5Db250cm9sKG1ldGhvZCA9ICJjdiIpKQ0KDQpjaGVtX01hcnNUdW5lUHJlZCA8LSBwcmVkaWN0KGNoZW1fTWFyc1R1bmVkLCAgY2hlbV90ZXN0KQ0KcG9zdFJlc2FtcGxlKGNoZW1fTWFyc1R1bmVQcmVkLCBjaGVtX3Rlc3QkWWllbGQpDQpgYGANCg0KIyMjIFNWTSBUdW5lZA0KDQpgYGB7cn0NCmNoZW1fU1ZNVHVuZWQgPC0gdHJhaW4oWWllbGR+LiAsDQogICAgICAgICAgICAgICAgICBkYXRhID0gY2hlbV90ZXN0LA0KICAgICAgICAgICAgICAgICAgIG1ldGhvZCA9ICJzdm1SYWRpYWwiLA0KICAgICAgICAgICAgICAgICAgIHR1bmVMZW5ndGggPSAxNSwNCiAgICAgICAgICAgICAgICAgICB0ckNvbnRyb2wgPSB0cmFpbkNvbnRyb2wobWV0aG9kID0gImN2IikpDQoNCmNoZW1fU1ZNVHVuZVByZWQgPC0gcHJlZGljdChjaGVtX1NWTVR1bmVkLCAgY2hlbV90ZXN0KQ0KcG9zdFJlc2FtcGxlKGNoZW1fU1ZNVHVuZVByZWQsIGNoZW1fdGVzdCRZaWVsZCkNCmBgYA0KDQojIyMgS05ODQoNCmBgYHtyfQ0Ka25uTW9kZWwgPC0gdHJhaW4oWWllbGR+LiwgDQogICAgICAgICAgICAgICAgICAgIGRhdGEgPSBjaGVtX3Rlc3QsDQogICAgICAgICAgICAgICAgICAgIG1ldGhvZCA9ICJrbm4iLA0KICAgICAgICAgICAgICAgICAgICBwcmVQcm9jID0gYygiY2VudGVyIiwgInNjYWxlIiksIA0KICAgICAgICAgICAgICAgICAgICB0dW5lTGVuZ3RoID0gMTApDQoNCmtublByZWQgPC0gcHJlZGljdChrbm5Nb2RlbCwgIGNoZW1fdGVzdCkNCnBvc3RSZXNhbXBsZShwcmVkID0ga25uUHJlZCwgb2JzID0gY2hlbV90ZXN0JFlpZWxkKQ0KYGBgDQoNCiMjIyBOZXVyYWwgTmV0d29yaw0KDQpgYGB7ciwgd2FybmluZz1GQUxTRX0NCm5uZXRHcmlkIDwtIGV4cGFuZC5ncmlkKC5kZWNheSA9IGMoMCwgMC4wMSwgLjEpLA0KICAgICAgICAgICAgICAgICAgICAgICAgLnNpemUgPSBjKDE6MTApLCAuYmFnID0gRkFMU0UpDQoNCm5uZXRUdW5lIDwtIHRyYWluKFlpZWxkfi4sIA0KICAgICAgICAgICAgICAgICAgZGF0YSA9IGNoZW1fdHJhaW4sIA0KICAgICAgICAgICAgICAgICAgbWV0aG9kID0gImF2Tk5ldCIsIA0KICAgICAgICAgICAgICAgICAgdHVuZUdyaWQgPSBubmV0R3JpZCwNCiAgICAgICAgICAgICAgICAgIHRyQ29udHJvbCA9IHRyYWluQ29udHJvbChtZXRob2QgPSAiY3YiKSwgDQogICAgICAgICAgICAgICAgICBsaW5vdXQgPSBUUlVFLHRyYWNlID0gRkFMU0UsDQogICAgICAgICAgICAgICAgICBNYXhOV3RzID0gMTAgKiAobmNvbChjaGVtX3RyYWluKSArIDEpICsgMTAgKyAxLCANCiAgICAgICAgICAgICAgICAgIG1heGl0ID0gNTAwKQ0KDQpgYGANCg0KYGBge3J9DQpubmV0UHJlZCA8LSBwcmVkaWN0KG5uZXRUdW5lLCAgY2hlbV90ZXN0KQ0KcG9zdFJlc2FtcGxlKHByZWRpY3Qobm5ldFR1bmUsICBjaGVtX3Rlc3QpLCBjaGVtX3Rlc3QkWWllbGQpDQpgYGANCg0KDQoNClRoZSBTVk0gdHVuZWQgaXMgdGhlIGJlc3QgcGVyZm9ybWluZyBSTVNFIGFuZCBSIHNxdWFyZWQgd2l0aCB2YWx1ZXMgb2YgUk1TRT0wLjA5MTc4OTgzICwgYW5kIFIgc3F1YXJlZD0wLjk5NTIwODEwIA0KDQoNCiMjIChiKQ0KDQoNCldoaWNoIHByZWRpY3RvcnMgYXJlIG1vc3QgaW1wb3J0YW50IGluIHRoZSBvcHRpbWFsIG5vbmxpbmVhciByZWdyZXNzaW9uIG1vZGVsPyBEbyBlaXRoZXIgdGhlIGJpb2xvZ2ljYWwgb3IgcHJvY2VzcyB2YXJpYWJsZXMgZG9taW5hdGUgdGhlIGxpc3Q/SG93IGRvIHRoZSB0b3AgdGVuIGltcG9ydGFudCBwcmVkaWN0b3JzIGNvbXBhcmUgdG8gdGhlIHRvcCB0ZW4gcHJlZGljdG9ycyBmcm9tIHRoZSBvcHRpbWFsIGxpbmVhciBtb2RlbD8NCg0KT2YgdGhlIDIwIGBNYW51ZmFjdHVyaW5nUHJvY2Vzc2AgcHJlZGljdG9ycyAxMiBhcmUgYEJpb2xvZ2ljYWxNYXRlcmlhbGAgYW5kIDggYXJlIGBNYW51ZmFjdHVyaW5nUHJvY2Vzc2AuIEluIHRoZSB0b3AgMTAsIDYgYXJlIGBNYW51ZmFjdHVyaW5nUHJvY2Vzc2AgaW4gd2l0aCAxcnN0IHRocm91Z2ggM3JkIGJlaW5nIGBNYW51ZmFjdHVyaW5nUHJvY2VzczMyYCwgYE1hbnVmYWN0dXJpbmdQcm9jZXNzMzZgLCBhbmQgYE1hbnVmYWN0dXJpbmdQcm9jZXNzMDVgLiANCkFsdGhvdWdoIG5laXRoZXIgZG9taW5hdGVzLCBNYW51ZmFjdHVyaW5nUHJvY2VzcyBkb2VzIGhvbGQgYSBncmVhdGVyIGluZmx1ZW5jZSBvdmVyYWxsLCB3aGVuIGNvbXBhcmVkIHRvIHRoZSByYXRpbyBvZiBvcHRpbWFsIG5vbmxpbmVhciB2cyBvcHRpbWFsIGxpbmVhciwgaW4gb3B0aW1hbCBsaW5lYXIsIE1hbnVyYWN0dXJpbmdQcm9jZXNzIGltcG9ydGFuY2UgaXMgZ3JlYXRlci4NCg0KDQpgYGB7cn0NCnBsb3QodmFySW1wKGNoZW1fU1ZNVHVuZWQpLCB0b3A9MTApDQpgYGANCg0KDQojIyAoYykNCg0KRXhwbG9yZSB0aGUgcmVsYXRpb25zaGlwcyBiZXR3ZWVuIHRoZSB0b3AgcHJlZGljdG9ycyBhbmQgdGhlIHJlc3BvbnNlIGZvciB0aGUgcHJlZGljdG9ycyB0aGF0IGFyZSB1bmlxdWUgdG8gdGhlIG9wdGltYWwgbm9ubGluZWFyIHJlZ3Jlc3Npb24gbW9kZWwuIERvIHRoZXNlIHBsb3RzIHJldmVhbCBpbnR1aXRpb24gYWJvdXQgdGhlIGJpb2xvZ2ljYWwgb3IgcHJvY2VzcyBwcmVkaWN0b3JzIGFuZCB0aGVpciByZWxhdGlvbnNoaXAgd2l0aCB5aWVsZD8NCg0KKiBDb3JycGxvdCB1c2VkIHRvIGV4cGxvcmUgcmVsYXRpb25zaGlwDQoqIFlpZWxkIHJlc3BvbnNlIHZhcmlhYmxlIGRvZXNu4oCZdCBoYXZlIHN0cm9uZyBjb3JyZWxhdGlvbnMgd2l0aCBtb3N0IG9mIHRoZSBpbXBvcnRhbnQgcHJlZGljdG9ycyBub3RlZCBwcmV2aW91c2x5LiANCiogU3Ryb25nZXN0IHBvc2l0aXZlIGNvcnJlbGF0aW9ucyBleGlzdCB3aXRoIGBNYW51ZmFjdHVyaW5nUHJvY2VzczMyYCBhbmQgYE1hbnVmYWN0dXJpbmdQcm9jZXNzMDlgICgwLjYxIGFuZCAwLjUwKS4NCiogVGhlIHN0cm9uZ2VzdCBuZWdhdGl2ZSBjb3JyZWxhdGlvbnMgZXhpc3Qgd2l0aCBgTWFudWZhY3R1cmluZ1Byb2Nlc3MzNmAgYW5kIGBNYW51ZmFjdHVyaW5nUHJvY2VzczEzYCAoLTAuNTMgYW5kIC0wLjUwLCByZXNwZWN0aXZlbHkpLg0KKiBObyBzdHJvbmcgY29ycmVsYXRpb25zIHdpdGggWWVpbGQgYW5kIHRoZSBpbXBvcnRhbnQgQmlvbG9naWNhbCBNYXRlcmlhbCBwcmVkaWN0b3JzIGlkZW50aWZpZWQgaW4gdGhlIHByZXZpb3VzIHN0ZXAuDQoNCmBgYHtyIGZpZy5oZWlnaHQ9MTAsIGZpZy53aWR0aD0xMCwgbWVzc2FnZT1GQUxTRSwgd2FybmluZz1GQUxTRX0NCmNvcnJfdmFscyA8LSBjaGVtX2RmICU+JSANCiAgZHBseXI6OnNlbGVjdCgnWWllbGQnLCAnTWFudWZhY3R1cmluZ1Byb2Nlc3MzMicsJ01hbnVmYWN0dXJpbmdQcm9jZXNzMzYnLA0KICAgICAgICAgJ0Jpb2xvZ2ljYWxNYXRlcmlhbDA2JywnTWFudWZhY3R1cmluZ1Byb2Nlc3MxMycsDQogICAgICAgICAnQmlvbG9naWNhbE1hdGVyaWFsMDMnLCdNYW51ZmFjdHVyaW5nUHJvY2VzczE3JywNCiAgICAgICAgICdCaW9sb2dpY2FsTWF0ZXJpYWwwMicsJ0Jpb2xvZ2ljYWxNYXRlcmlhbDEyJywNCiAgICAgICAgICdNYW51ZmFjdHVyaW5nUHJvY2VzczA5JywnTWFudWZhY3R1cmluZ1Byb2Nlc3MzMScpDQoNCmNvcnJfcGxvdF92YWxzIDwtIGNvcihjb3JyX3ZhbHMpDQoNCmNvcnJwbG90Lm1peGVkKGNvcnJfcGxvdF92YWxzLCB0bC5jb2wgPSAnYmxhY2snLCB0bC5wb3MgPSAnbHQnLCANCiAgICAgICAgIHVwcGVyID0gIm51bWJlciIsIGxvd2VyPSJjaXJjbGUiKQ0KYGBgDQo=