Load Packages

haven

# Check if haven is already installed and if it is, load it.
if (!require(haven)){
  # If it's not intalled, then tell R to install it.
  install.packages("haven", dependencies = TRUE)
  # Once it's installed, tell R to load it.
  library(haven)
}

tidyverse

if (!require()){
  install.packages("", dependencies = TRUE)
  library()
}

afex

if (!require(afex)){
  install.packages("afex", dependencies = TRUE)
  require(afex)
} 

dataset

dataset <- read_sav("https://osf.io/p5rqv/download")

anova

dataset %>% #start with dataset
  distinct(Subject, .keep_all = TRUE) -> dataset.unique
(dataset.unique.aov <- aov_ez(id = "Subject", dv = "RaceDFeb", data = dataset.unique, between=c("TrainTyp", "EC")))

output

Converting to factor: TrainTyp, EC
Contrasts set to contr.sum for the following variables: TrainTyp, EC
Anova Table (Type 3 tests)
Response: RaceDFeb
       Effect     df  MSE       F    ges p.value
1    TrainTyp 1, 710 0.16    0.00 <.0001    >.99
2          EC 1, 710 0.16 7.10 **   .010    .008
3 TrainTyp:EC 1, 710 0.16    0.64  .0009     .43
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘+’ 0.1 ‘ ’ 1

calculate

(dataset.unique %>% # start with the dataset 
  group_by(EC) %>% # group by the training goal variable
  summarise(mean = mean(RaceDFeb), # get the mean of the DV in each group
            SD = sd(RaceDFeb)) -> trainingGoalDescriptives) # get the SD of the DV in each group
LS0tCnRpdGxlOiAiTGVhcm4gUiAtIEltcG9ydCBEYXRhIgpvdXRwdXQ6IAogIGh0bWxfbm90ZWJvb2s6CiAgICB0aGVtZTogcGFwZXIKICAgIHRvYzogdHJ1ZQotLS0KCiMjIExvYWQgUGFja2FnZXMgey50YWJzZXR9CgojIyMgaGF2ZW4KCmBgYHtyfQojIENoZWNrIGlmIGhhdmVuIGlzIGFscmVhZHkgaW5zdGFsbGVkIGFuZCBpZiBpdCBpcywgbG9hZCBpdC4KaWYgKCFyZXF1aXJlKGhhdmVuKSl7CiAgIyBJZiBpdCdzIG5vdCBpbnRhbGxlZCwgdGhlbiB0ZWxsIFIgdG8gaW5zdGFsbCBpdC4KICBpbnN0YWxsLnBhY2thZ2VzKCJoYXZlbiIsIGRlcGVuZGVuY2llcyA9IFRSVUUpCiAgIyBPbmNlIGl0J3MgaW5zdGFsbGVkLCB0ZWxsIFIgdG8gbG9hZCBpdC4KICBsaWJyYXJ5KGhhdmVuKQp9CmBgYAoKIyMjIHRpZHl2ZXJzZQoKYGBge3J9CmlmICghcmVxdWlyZSgpKXsKICBpbnN0YWxsLnBhY2thZ2VzKCIiLCBkZXBlbmRlbmNpZXMgPSBUUlVFKQogIGxpYnJhcnkoKQp9CmBgYAoKIyMjIGFmZXgKYGBge3J9CmlmICghcmVxdWlyZShhZmV4KSl7CiAgaW5zdGFsbC5wYWNrYWdlcygiYWZleCIsIGRlcGVuZGVuY2llcyA9IFRSVUUpCiAgcmVxdWlyZShhZmV4KQp9IApgYGAKCiMjIGRhdGFzZXQKYGBge3J9CmRhdGFzZXQgPC0gcmVhZF9zYXYoImh0dHBzOi8vb3NmLmlvL3A1cnF2L2Rvd25sb2FkIikKYGBgCgojIyBhbm92YQpgYGB7cn0KZGF0YXNldCAlPiUgI3N0YXJ0IHdpdGggZGF0YXNldAogIGRpc3RpbmN0KFN1YmplY3QsIC5rZWVwX2FsbCA9IFRSVUUpIC0+IGRhdGFzZXQudW5pcXVlCmBgYAoKYGBge3J9CihkYXRhc2V0LnVuaXF1ZS5hb3YgPC0gYW92X2V6KGlkID0gIlN1YmplY3QiLCBkdiA9ICJSYWNlREZlYiIsIGRhdGEgPSBkYXRhc2V0LnVuaXF1ZSwgYmV0d2Vlbj1jKCJUcmFpblR5cCIsICJFQyIpKSkKYGBgCgojIyBvdXRwdXQKYGBge3J9CkNvbnZlcnRpbmcgdG8gZmFjdG9yOiBUcmFpblR5cCwgRUMKQ29udHJhc3RzIHNldCB0byBjb250ci5zdW0gZm9yIHRoZSBmb2xsb3dpbmcgdmFyaWFibGVzOiBUcmFpblR5cCwgRUMKQW5vdmEgVGFibGUgKFR5cGUgMyB0ZXN0cykKYGBgCmBgYHtyfQpSZXNwb25zZTogUmFjZURGZWIKICAgICAgIEVmZmVjdCAgICAgZGYgIE1TRSAgICAgICBGICAgIGdlcyBwLnZhbHVlCjEgICAgVHJhaW5UeXAgMSwgNzEwIDAuMTYgICAgMC4wMCA8LjAwMDEgICAgPi45OQoyICAgICAgICAgIEVDIDEsIDcxMCAwLjE2IDcuMTAgKiogICAuMDEwICAgIC4wMDgKMyBUcmFpblR5cDpFQyAxLCA3MTAgMC4xNiAgICAwLjY0ICAuMDAwOSAgICAgLjQzCi0tLQpTaWduaWYuIGNvZGVzOiAgMCDigJgqKirigJkgMC4wMDEg4oCYKirigJkgMC4wMSDigJgq4oCZIDAuMDUg4oCYK+KAmSAwLjEg4oCYIOKAmSAxCmBgYAoKCgojIyBjYWxjdWxhdGUKYGBge3J9CihkYXRhc2V0LnVuaXF1ZSAlPiUgIyBzdGFydCB3aXRoIHRoZSBkYXRhc2V0IAogIGdyb3VwX2J5KEVDKSAlPiUgIyBncm91cCBieSB0aGUgdHJhaW5pbmcgZ29hbCB2YXJpYWJsZQogIHN1bW1hcmlzZShtZWFuID0gbWVhbihSYWNlREZlYiksICMgZ2V0IHRoZSBtZWFuIG9mIHRoZSBEViBpbiBlYWNoIGdyb3VwCiAgICAgICAgICAgIFNEID0gc2QoUmFjZURGZWIpKSAtPiB0cmFpbmluZ0dvYWxEZXNjcmlwdGl2ZXMpICMgZ2V0IHRoZSBTRCBvZiB0aGUgRFYgaW4gZWFjaCBncm91cApgYGAKCg==