This is an R Markdown document. Markdown is a simple formatting syntax for authoring HTML, PDF, and MS Word documents. For more details on using R Markdown see http://rmarkdown.rstudio.com.
When you click the Knit button a document will be generated that includes both content as well as the output of any embedded R code chunks within the document. You can embed an R code chunk like this:
Use control+Enter to run the code chunks on PC. Use command+Enter to run the code chunks on MAC.
In this section, we install and load the necessary packages.
In this section, we import the necessary data for this lab.
We use the Weekly.csv data set, which is similar in nature to the Smarket data from the R lab.
This data set consists of percentage returns for the S&P 500 stock index over 1,089 weekly returns for 21 years, from the beginning of 1990 until the end of 2010. For each week, we have recorded the percentage returns for each of the five previous trading weeks, Lag1 through Lag5. We have also recorded Volume (the number of shares traded on the previous week, in billions), Today (the percentage return for this week) and Direction (whether the market was Up or Down on this week).
Do the following tasks and answer the questions below.
Produce some numerical and graphical summaries of the Weekly data.
# Explore the dataset using 5 functions: dim(), str(), colnames(), head() and tail
dim(Weekly)
## [1] 1089 9
str(Weekly)
## 'data.frame': 1089 obs. of 9 variables:
## $ Year : int 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 ...
## $ Lag1 : num 0.816 -0.27 -2.576 3.514 0.712 ...
## $ Lag2 : num 1.572 0.816 -0.27 -2.576 3.514 ...
## $ Lag3 : num -3.936 1.572 0.816 -0.27 -2.576 ...
## $ Lag4 : num -0.229 -3.936 1.572 0.816 -0.27 ...
## $ Lag5 : num -3.484 -0.229 -3.936 1.572 0.816 ...
## $ Volume : num 0.155 0.149 0.16 0.162 0.154 ...
## $ Today : num -0.27 -2.576 3.514 0.712 1.178 ...
## $ Direction: chr "Down" "Down" "Up" "Up" ...
colnames(Weekly)
## [1] "Year" "Lag1" "Lag2" "Lag3" "Lag4" "Lag5"
## [7] "Volume" "Today" "Direction"
head(Weekly)
## Year Lag1 Lag2 Lag3 Lag4 Lag5 Volume Today Direction
## 1 1990 0.816 1.572 -3.936 -0.229 -3.484 0.1549760 -0.270 Down
## 2 1990 -0.270 0.816 1.572 -3.936 -0.229 0.1485740 -2.576 Down
## 3 1990 -2.576 -0.270 0.816 1.572 -3.936 0.1598375 3.514 Up
## 4 1990 3.514 -2.576 -0.270 0.816 1.572 0.1616300 0.712 Up
## 5 1990 0.712 3.514 -2.576 -0.270 0.816 0.1537280 1.178 Up
## 6 1990 1.178 0.712 3.514 -2.576 -0.270 0.1544440 -1.372 Down
tail(Weekly)
## Year Lag1 Lag2 Lag3 Lag4 Lag5 Volume Today Direction
## 1084 2010 0.043 -2.173 3.599 0.015 0.586 4.177436 -0.861 Down
## 1085 2010 -0.861 0.043 -2.173 3.599 0.015 3.205160 2.969 Up
## 1086 2010 2.969 -0.861 0.043 -2.173 3.599 4.242568 1.281 Up
## 1087 2010 1.281 2.969 -0.861 0.043 -2.173 4.835082 0.283 Up
## 1088 2010 0.283 1.281 2.969 -0.861 0.043 4.454044 1.034 Up
## 1089 2010 1.034 0.283 1.281 2.969 -0.861 2.707105 0.069 Up
# use summary() to print the descriptive statistics
summary(Weekly)
## Year Lag1 Lag2 Lag3
## Min. :1990 Min. :-18.1950 Min. :-18.1950 Min. :-18.1950
## 1st Qu.:1995 1st Qu.: -1.1540 1st Qu.: -1.1540 1st Qu.: -1.1580
## Median :2000 Median : 0.2410 Median : 0.2410 Median : 0.2410
## Mean :2000 Mean : 0.1506 Mean : 0.1511 Mean : 0.1472
## 3rd Qu.:2005 3rd Qu.: 1.4050 3rd Qu.: 1.4090 3rd Qu.: 1.4090
## Max. :2010 Max. : 12.0260 Max. : 12.0260 Max. : 12.0260
## Lag4 Lag5 Volume Today
## Min. :-18.1950 Min. :-18.1950 Min. :0.08747 Min. :-18.1950
## 1st Qu.: -1.1580 1st Qu.: -1.1660 1st Qu.:0.33202 1st Qu.: -1.1540
## Median : 0.2380 Median : 0.2340 Median :1.00268 Median : 0.2410
## Mean : 0.1458 Mean : 0.1399 Mean :1.57462 Mean : 0.1499
## 3rd Qu.: 1.4090 3rd Qu.: 1.4050 3rd Qu.:2.05373 3rd Qu.: 1.4050
## Max. : 12.0260 Max. : 12.0260 Max. :9.32821 Max. : 12.0260
## Direction
## Length:1089
## Class :character
## Mode :character
##
##
##
# Correct the type of 'Direction' which has to be factor
Weekly$Direction<- as.factor(Weekly$Direction)
# use pairs() to produce a matrix that contains all of the pairwise correlations among the predictors in a data set.
pairs(Weekly, col=Weekly$Direction)
# use cor to create the correlation matrix of all numerical variables.
cor(Weekly[,-9])
## Year Lag1 Lag2 Lag3 Lag4
## Year 1.00000000 -0.032289274 -0.03339001 -0.03000649 -0.031127923
## Lag1 -0.03228927 1.000000000 -0.07485305 0.05863568 -0.071273876
## Lag2 -0.03339001 -0.074853051 1.00000000 -0.07572091 0.058381535
## Lag3 -0.03000649 0.058635682 -0.07572091 1.00000000 -0.075395865
## Lag4 -0.03112792 -0.071273876 0.05838153 -0.07539587 1.000000000
## Lag5 -0.03051910 -0.008183096 -0.07249948 0.06065717 -0.075675027
## Volume 0.84194162 -0.064951313 -0.08551314 -0.06928771 -0.061074617
## Today -0.03245989 -0.075031842 0.05916672 -0.07124364 -0.007825873
## Lag5 Volume Today
## Year -0.030519101 0.84194162 -0.032459894
## Lag1 -0.008183096 -0.06495131 -0.075031842
## Lag2 -0.072499482 -0.08551314 0.059166717
## Lag3 0.060657175 -0.06928771 -0.071243639
## Lag4 -0.075675027 -0.06107462 -0.007825873
## Lag5 1.000000000 -0.05851741 0.011012698
## Volume -0.058517414 1.00000000 -0.033077783
## Today 0.011012698 -0.03307778 1.000000000
Question 1 : Does there appear to be any patterns? There’s no correlations between the lag variables and today’s.
Use the full data set to perform a logistic regression with Direction as the response and the five lag variables plus Volume as predictors. Use the summary function to print the results.
# Use glm() to run a logistic analysis on Lag1 through Lag5 and Volume as predictors and Direction as the response
glm.fits = glm(Direction ~ Lag1 + Lag2 + Lag3 + Lag4 + Lag5 + Volume, data=Weekly, family=binomial)
summary(glm.fits)
##
## Call:
## glm(formula = Direction ~ Lag1 + Lag2 + Lag3 + Lag4 + Lag5 +
## Volume, family = binomial, data = Weekly)
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 0.26686 0.08593 3.106 0.0019 **
## Lag1 -0.04127 0.02641 -1.563 0.1181
## Lag2 0.05844 0.02686 2.175 0.0296 *
## Lag3 -0.01606 0.02666 -0.602 0.5469
## Lag4 -0.02779 0.02646 -1.050 0.2937
## Lag5 -0.01447 0.02638 -0.549 0.5833
## Volume -0.02274 0.03690 -0.616 0.5377
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 1496.2 on 1088 degrees of freedom
## Residual deviance: 1486.4 on 1082 degrees of freedom
## AIC: 1500.4
##
## Number of Fisher Scoring iterations: 4
Question 2: Do any of the predictors appear to be statistically significant? If so, which ones? Lag2 is the only predictor with a significant Pvalue.
Compute the confusion matrix and overall fraction of correct predictions.
# predict the Direction probability of the whole dataset using the fitted logistic regression
glm.probs = predict(glm.fits,type = "response")
# create a vector of class predictions based on whether the predicted probability of a market increase is greater than or less than 0.5
glm.pred = ifelse(glm.probs>0.5,"Up","Down")
# Use table() function to produce a confusion matrix
confusionMatrixweekly <- table(Weekly$Direction,glm.pred)
confusionMatrixweekly
## glm.pred
## Down Up
## Down 54 430
## Up 48 557
Use the confusion matrix to compute Accuracy, Sensitivity and Specificity.
# Accuracy
# Sensitivity
# Specificity
Question 3: Explain what the confusion matrix is telling you about the types of errors made by logistic regression. In other words, interpret the Accuracy, Sensitivity and Specificity.
Now fit the logistic regression model using a training data period from 1990 to 2008, with Lag2 as the only predictor. Compute the confusion matrix and the overall fraction of correct predictions (accuracy) for the held out data (that is, the data from 2009 and 2010).
# set seed to 1
set.seed(1)
## split the data into training and testing sets based on the year.
# Use the data before 2009 as the training set and use the data of years 2009 and 2010 as the testing test
# Use glm() to run a logistic analysis on Lag2 as predictor and Direction as the response
# predict the Direction probability of the test dataset using the fitted logistic regression
# create a vector of class predictions based on whether the predicted probability of a market increase is greater than or less than 0.5
# Use table() function to produce a confusion matrix
# Calculate accuracy
Question 4: Is this classifier better than the logistic model fitted in Task 2? Explain.
Repeat Task 4 using KNN with K = 1 and K = 10. Note that you should only use Lag2 as the predictor and use the training and testing sets you developed in Task 4.
### KNN for k=1
## IMPORTANT: you must use as.matrix() function to covert to matrix
# This is a requirement imposed by knn() function
# So, you should write knn(as.matrix(trainWeekly[,'Lag2']), as.matrix(testWeekly[,'Lag2']), trainWeekly$Direction, k = 1)
# Use table() function to produce a confusion matrix
# Calculate accuracy
### KNN k = 10
# Use table() function to produce a confusion matrix
# Calculate accuracy
Plot ROC curve and compute AUC for the latest logistic regression, KNN (k = 1) and KNN (k = 10).
# ROC curve for logistic regression
# ROC curve for KNN k = 1
# ROC curve for KNN k = 10
Question 5 : Which of these methods appears to provide the best results on this data? Use accuracy, AUC and ROC Curve results.