Author: Hui-Ju Huang
mydata <- read.table("./train.csv", header = TRUE, sep = ",", dec = ".")
head(mydata)
## PassengerId Survived Pclass
## 1 1 0 3
## 2 2 1 1
## 3 3 1 3
## 4 4 1 1
## 5 5 0 3
## 6 6 0 3
## Name Sex Age SibSp Parch
## 1 Braund, Mr. Owen Harris male 22 1 0
## 2 Cumings, Mrs. John Bradley (Florence Briggs Thayer) female 38 1 0
## 3 Heikkinen, Miss. Laina female 26 0 0
## 4 Futrelle, Mrs. Jacques Heath (Lily May Peel) female 35 1 0
## 5 Allen, Mr. William Henry male 35 0 0
## 6 Moran, Mr. James male NA 0 0
## Ticket Fare Cabin Embarked
## 1 A/5 21171 7.2500 S
## 2 PC 17599 71.2833 C85 C
## 3 STON/O2. 3101282 7.9250 S
## 4 113803 53.1000 C123 S
## 5 373450 8.0500 S
## 6 330877 8.4583 Q
Unit of Observation: Each row in the dataset represents a passenger who was aboard the Titanic.
Sample Size: The sample size is 891, which is the total number of rows (passengers) in the dataset.
Definition of All Variables
Units of Measurement
str(mydata)
## 'data.frame': 891 obs. of 12 variables:
## $ PassengerId: int 1 2 3 4 5 6 7 8 9 10 ...
## $ Survived : int 0 1 1 1 0 0 0 0 1 1 ...
## $ Pclass : int 3 1 3 1 3 3 1 3 3 2 ...
## $ Name : chr "Braund, Mr. Owen Harris" "Cumings, Mrs. John Bradley (Florence Briggs Thayer)" "Heikkinen, Miss. Laina" "Futrelle, Mrs. Jacques Heath (Lily May Peel)" ...
## $ Sex : chr "male" "female" "female" "female" ...
## $ Age : num 22 38 26 35 35 NA 54 2 27 14 ...
## $ SibSp : int 1 1 0 1 0 0 0 3 0 1 ...
## $ Parch : int 0 0 0 0 0 0 0 1 2 0 ...
## $ Ticket : chr "A/5 21171" "PC 17599" "STON/O2. 3101282" "113803" ...
## $ Fare : num 7.25 71.28 7.92 53.1 8.05 ...
## $ Cabin : chr "" "C85" "" "C123" ...
## $ Embarked : chr "S" "C" "S" "S" ...
summary(mydata)
## PassengerId Survived Pclass Name
## Min. : 1.0 Min. :0.0000 Min. :1.000 Length:891
## 1st Qu.:223.5 1st Qu.:0.0000 1st Qu.:2.000 Class :character
## Median :446.0 Median :0.0000 Median :3.000 Mode :character
## Mean :446.0 Mean :0.3838 Mean :2.309
## 3rd Qu.:668.5 3rd Qu.:1.0000 3rd Qu.:3.000
## Max. :891.0 Max. :1.0000 Max. :3.000
##
## Sex Age SibSp Parch
## Length:891 Min. : 0.42 Min. :0.000 Min. :0.0000
## Class :character 1st Qu.:20.12 1st Qu.:0.000 1st Qu.:0.0000
## Mode :character Median :28.00 Median :0.000 Median :0.0000
## Mean :29.70 Mean :0.523 Mean :0.3816
## 3rd Qu.:38.00 3rd Qu.:1.000 3rd Qu.:0.0000
## Max. :80.00 Max. :8.000 Max. :6.0000
## NA's :177
## Ticket Fare Cabin Embarked
## Length:891 Min. : 0.00 Length:891 Length:891
## Class :character 1st Qu.: 7.91 Class :character Class :character
## Mode :character Median : 14.45 Mode :character Mode :character
## Mean : 32.20
## 3rd Qu.: 31.00
## Max. :512.33
##
colSums(is.na(mydata))
## PassengerId Survived Pclass Name Sex Age
## 0 0 0 0 0 177
## SibSp Parch Ticket Fare Cabin Embarked
## 0 0 0 0 0 0
mydata$Survived <- factor(mydata$Survived)
mydata$Pclass <- factor(mydata$Pclass)
mydata$Sex <- factor(mydata$Sex)
mydata$Embarked <- factor(mydata$Embarked)
str(mydata)
## 'data.frame': 891 obs. of 12 variables:
## $ PassengerId: int 1 2 3 4 5 6 7 8 9 10 ...
## $ Survived : Factor w/ 2 levels "0","1": 1 2 2 2 1 1 1 1 2 2 ...
## $ Pclass : Factor w/ 3 levels "1","2","3": 3 1 3 1 3 3 1 3 3 2 ...
## $ Name : chr "Braund, Mr. Owen Harris" "Cumings, Mrs. John Bradley (Florence Briggs Thayer)" "Heikkinen, Miss. Laina" "Futrelle, Mrs. Jacques Heath (Lily May Peel)" ...
## $ Sex : Factor w/ 2 levels "female","male": 2 1 1 1 2 2 2 2 1 1 ...
## $ Age : num 22 38 26 35 35 NA 54 2 27 14 ...
## $ SibSp : int 1 1 0 1 0 0 0 3 0 1 ...
## $ Parch : int 0 0 0 0 0 0 0 1 2 0 ...
## $ Ticket : chr "A/5 21171" "PC 17599" "STON/O2. 3101282" "113803" ...
## $ Fare : num 7.25 71.28 7.92 53.1 8.05 ...
## $ Cabin : chr "" "C85" "" "C123" ...
## $ Embarked : Factor w/ 4 levels "","C","Q","S": 4 2 4 4 4 3 4 4 4 2 ...
summary(mydata)
## PassengerId Survived Pclass Name Sex
## Min. : 1.0 0:549 1:216 Length:891 female:314
## 1st Qu.:223.5 1:342 2:184 Class :character male :577
## Median :446.0 3:491 Mode :character
## Mean :446.0
## 3rd Qu.:668.5
## Max. :891.0
##
## Age SibSp Parch Ticket
## Min. : 0.42 Min. :0.000 Min. :0.0000 Length:891
## 1st Qu.:20.12 1st Qu.:0.000 1st Qu.:0.0000 Class :character
## Median :28.00 Median :0.000 Median :0.0000 Mode :character
## Mean :29.70 Mean :0.523 Mean :0.3816
## 3rd Qu.:38.00 3rd Qu.:1.000 3rd Qu.:0.0000
## Max. :80.00 Max. :8.000 Max. :6.0000
## NA's :177
## Fare Cabin Embarked
## Min. : 0.00 Length:891 : 2
## 1st Qu.: 7.91 Class :character C:168
## Median : 14.45 Mode :character Q: 77
## Mean : 32.20 S:644
## 3rd Qu.: 31.00
## Max. :512.33
##
selected_vars <- c("Age", "Fare", "SibSp", "Parch")
selected_data <- mydata[, selected_vars]
#install.packages("psych")
library(psych)
describe(selected_data)
## vars n mean sd median trimmed mad min max range skew
## Age 1 714 29.70 14.53 28.00 29.27 13.34 0.42 80.00 79.58 0.39
## Fare 2 891 32.20 49.69 14.45 21.38 10.24 0.00 512.33 512.33 4.77
## SibSp 3 891 0.52 1.10 0.00 0.27 0.00 0.00 8.00 8.00 3.68
## Parch 4 891 0.38 0.81 0.00 0.18 0.00 0.00 6.00 6.00 2.74
## kurtosis se
## Age 0.16 0.54
## Fare 33.12 1.66
## SibSp 17.73 0.04
## Parch 9.69 0.03
library(ggplot2)
##
## Attaching package: 'ggplot2'
## The following objects are masked from 'package:psych':
##
## %+%, alpha
ggplot(mydata, aes(x = Age)) +
geom_histogram(binwidth = 5, fill = "lightblue",color = "gray") +
labs(title = "Distribution of Age",
x = "Age",
y = "Frequency")
## Warning: Removed 177 rows containing non-finite outside the scale range
## (`stat_bin()`).
ggplot(mydata, aes(x = Fare)) +
geom_histogram(binwidth = 10, fill = "lightgreen", color = "gray") +
labs(title = "Distribution of Fare",
x = "Fare",
y = "Frequency")
ggplot(mydata, aes(x = Age, y = Fare)) +
geom_point(color = "blue") +
labs(title = "Scatterplot of Age vs. Fare",
x = "Age",
y = "Fare")
## Warning: Removed 177 rows containing missing values or values outside the scale range
## (`geom_point()`).